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- VISUAL RECOGNITION OF ARTIFACTS BY COMPUTER
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Q - This work describes a set of prograas which implements a bottoa-up
‘ artifact modeling and recognizing system. Tnis systeam is implemented on
a DEC KI-'0 4in BLISS-10, MACRO-10, and FORTRAN. Sequences of
stereoscopic pairs of images are digitized, frame by frame condensed to
vertex-string-surface graphs (V-S-3 graphs), and re-encoded as nalf
chunk graphs (H-C graphs). The single fraae procaessing requires
approximately 20 minutes per image. Single image derived H-C graphs are
matched by stereo pairs for depth, and by time interval pairs for
motioan. By using depth cues, motion cues and intensity feature labels,
individual object subgraphs are segmented. Individual object graphs are

L matched with and/or entered into an object graph library.

We describe two new edge detection algorithas, an edge-based rezion

aggregation algorithm, a scan 1line orieated vertex-string encoding

algorithm, a half chuank graph matching algoritha, and a histogran-based
graph matching algorithm. de also introduce the idea of the "half
chunk”", an elemental curvature element which can be used to form scale

and coordinate system invariant object graphs (or "feature"” centered

object models).
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Chapter 1

Motivations and Strategies

1.1 Motivations

This thesis consists of discussions of several operational programs

which together embody an artifact recognition system. According to the

American Heritage Digtignary of the Enzlish Lapguage, an artifact is:
"An object produced or shaped by human workmanship; especially, a

simple tool, weapon, or ornament of archaeological or historical

interest."

We use the word artifact to mean a constructed object. As such, we
design it to take a specific shape. Our visual recognition systea is
therefore designed to extract and manipulate shape related models of
objects. These models are "discontinuity"-based. We encode objects as
a cloud of discontinuity points (each carrying property 1lists which
allow point to point comparisons) which are interconnected into graphs.
The links between discontinulities represent relationships into which the
connected points enter.

Recognition of a thing or a relationship, in the case of machine
intelligence, can be defined as T"instantiating" that thing or
relationship. By this we mean producing a machine state which
represents the thing or relationship. In our system, this state comes




about by detecting critical primitive components (edges, regions,

contours, atc.), encoding them as atomic quantities (building primitive
data blocks in memory with feature vectors describing specific component
variations), and forming relationships between these atoms (building
graph structures which represent objects and object groupings).

In this work we have proposed and implemented a variety of specific
algorithms for specific recognition and detection problems, however the
primary contribution made has been the integration of many different
processing steps into a bottom-up, model-based vision system. We began
our design assuming that top-down processing was desirable for actual
object cognition. To perform a model directed parsing, we declded it
would be necessary to get injitial correspondences from models to scenes
via some bottom-up process. This bottoam-up process, as it became more
and more powerful, eventually became the entire recognition system.
While we do not totally debunk top-down systems, we simply point out
that carefully constructed bottom-up processing, with allowances for
multiple interpretations, can perform recognition (as sensors become
better, computers become faster, and algorithms more powerful).

Whereas, top-down algorithms always require bottom-up starter processes.
1.2 Strategies

Our early visual processing is single image based. We have found
that processing on the actual image arrays is the most efficient way to
perform local convolution operations, But, because any operation
performed uniforamly over an entire retinal field (in our case nominally
256x256) is very slow for serial computers (it takes approximately 8
seconds for our DEC KI-10 to sweep through an image array for averaging
operations), we wish to move into more abstract spaces quickly (into
spaces described by image graphs).

We begin by performing edge detection (Chapter 2). We have
invented two new edge detectors which allow detection of sharp and
diffused intensity transitions. We have also evaluated these two

detector schemes along with some other techniques described in the
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literature. Our techniques are good for detecting shadow and object
boundaries in a noisy environment, if the noise statistics are known and
sufficiently below the level of significant intensity changes. These
restrictions apply readily for vidicon and solid state visual band

mosaic sensors.

Following eodge detection, we segment regions by convolving
homogeneity operators with the edge detected images. We use the absence
of edges in an area to form connected regions. In effect, we fill in
broken edge chains which enclose compact areas, and generate some
classes of subjective contours (Chapter 3). We then use a scan line
based (non-following) algoritham to find vertex points and build coatour
strings. These strings are smoothed and written as
vertex-string-surface graphs (V-3S-8). The contour encoding is made
simpler by the presence of accurate region assignments prior to boundary

extraction.

Color images can be processed by performing three times as much
work prior to region and vertex-string processing (by edge detecting on
red, green, and blue images - superimposing the results). For textured
scenes < _1ificantly more processing is required. Rough areas are
transformed into smoothed areas in new images. These images are re-edge
detected. The new edge data is precipitated into the old edge images
from the original intensity image (after edges in rough regions have
been removed). Therefore, the amount of additional processing for
texture data is proportional to the number of individual texture
smoothing processes implemented (for a good texture system probably 15

to 100 times more processing would be required).

Following V-3-3 formation from single images, we no longer operate
on the sampled image space. We transform the V-S-3 graph into a half
chunk graph (H-C). The half chunk graph encodes scenes as
interconnected elemental curvature elements (the half chunks), each
naving a property list contain image intensity properties and spatial
properties (positions, tangents, and tangent changes). Ffor the domain

of artifacts, these curvature elements contain the critical object




features required for recognition, and allow object encodings resistant

to changes in viewing angle. We correlate feature groupings between
pairs of H-C graphs for depth and motion information (Chapter 4). The
result of each graph matching is a transform which takes one graph
dimensionally into the other, and a new fused graph which is made by
merging as many compatible features as possible between the input
graphs.

Following graph matching many object subgroupings have been
disassociated (parts of single objects are connected in depth and nave
common motion transforms, however parts of different objects tend to be
disconnected or do not move together). To further disassociate object
groupings a "Waltz-like" labeling scheme is employed. This process 1is
based on vertex and region labeling. Labels are constrained by semantic

types and measured boundary feature properties (Appendix D).

Our object recognition program operates on H-C graphs which are
assumed to be single objects (or descriptive fragments of single
objects). The advantage of the H-C graph for object modeling is that it
is "feature" cenﬁered rather than "object" centered. The graph is scale
and coordinate system invariant (Chapter 5). We match object H-C graphs
by extracting nistograams of subgraph components between input graphs and
graphs stored in an object library. These histograms are then compared.
It 1is proposed that objects be modeled as the histograms alone. It is
also proposed that the H-C graphs be directly generated from edge data
(without the intermediate step of V-S-S graph formation).
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Chapter 2

Two New Edge Detectors

2.1, Introduction

We have done extensive experimentation in low-level, bottom-up
segmentation and have found edge detection based techniques to be very

tractable from both theoretical and practical standpoints. We have in

the process of this work designed two interesting detection methods, one
l difference-based and the other adaptive threshold based. These
¢ techniques are desirable because they find "thin"™ edge strings (i.e.
| unlike strict gradient-based approaches where thick bands of edge data

are generated), they may be tuned to give good signal/noise ratios for a

P

variety of edge transition sizes and image noise statistics, edge
position may be computed to greater precision than the basic pixel size,
and implementation is efficient in hardware or software. Our techniques
are based on the application of arrays of edge detectors, each sensitive
to a different group of edge types. An algorithm for selecting the most
appropriate detector response in a particular region 1s used to

consolidate the results for all detectors.
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; 2.2. Related Work

Most of the work in low-~level visual segmentation can be grouped
into one of five main categories. These are segmentation by feature
histogram, by region-based processing, by gradient-based edge detection,

by edge detection with non-maxima suppression, and by edge template
[}
matching. Our work has elements of last two techniques.

The classic work in the area of visual segmentation by histograa
bpased techniques was done by Ohlander [45]. In his work, one
dimensional histograms of various color features were partitioned wusing
a heuristic concept of histogram peak "goodness" (a combination of peax
shape and isolation). Then Lthe partitions were reprojected into Iimage
space to generated Lthe required object partitions. Similar work has
been done Dby Schacter, et al. {56] and Hanson (20), using two
dimensional histograms, with similar results.

These histogram-based techniques allow good results for some cases,
however they ignore some fairly important problems. First, it has been
our experience that camera Systems tend to have slow, uniform i{ntensity
& variations over the retinal area which are not caused by lighting or

object reflectance. In color ilmaging, this variation does not track

well from color spectrum to color spectruam. What is worse, the
amplitude of the variations may change with overall aabient 1lighting.
In summary, all the points assoclated with a given surface may not give
rise to a well defined peak in the histogram space. Obviously,

histogram peak selection can then break down.

A tacit assumption of histogram-based techniques is that there is a
one-to-one relationship between histogram peaks and object surfaces.
Under this assumption, each peak may be thought of as an independent,
unimodal feature distribution function, and peak selection is simply the
identification of the parameters of the distribution. The basic problem
in histogram techniques can be traced back to this assuaption. While (n
many cases each peak is predominantly from a single object surface, we
nave absolutely no guarantee that this is the case. When (t is not,
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histogram techniques are not valid.

Region-based techniques have been used by Brice and Fennema (61,
Tenenbaum (60), Feldman and Yakimovsky [14], and others. Tnhe basic
approach consists of selecting a region seed point (possibly any point,
or alternatively some archetypical point), and adding adjacent
unassigned points minimizing some difference criterion. Region-based
techniques are theoretically equivalent to edge base techniques except
to the extent that they incorporate higher level information. Without
this bhigh level information the contours generated between regions will
exactly coincide to contours of maximum difference (the same as the
contours generated by a non-maxima suppressing edge detection scheme).
Brice and Fennema incorporated a figure "goodness" criterion by allowing
region boundaries to grow at a constrained rate. Tenenbaum uses a
semantic criterion in addition to simple intensity information to order
merging. Feldman and Yakimovsky incorporate a Baysian decision

technique into their region-based system.

We feel that the initial feature extraction phase of processing is
not the place to incorporate high level knowledge. If this is done, it
becomes difficult to evaluate performance and detracts from overall
low=-level system generality. The system starts seeing what it wants to
see, rather than what is actually there.

We have expanded edge detection based attacks on the segmentation
problem into three different approaches because each represents a
slightly different view of what an "edge" is. In the pure gradient
approach, an edge is a high gradient point. This view of things goes
back at least to Roberts [51], and has persisted in work by O'Gorman and
Clowes [(u46], Shirai (58], and others. The problem with this idea of an
edge is that over a thick band at surface-surface interfaces we get high
gradient points.

Rosenfeld ([52](53] and Burr (7] consider an edge point to be where
the maximum (miniaum) gradient occurs. This maximum point suppresses

all non-maxima in some area of influence around itself, Rosenfeld, as




an additional refinemant, sweeps the image with operators of ascending
size (1x1, 2x2, 4x4, 3x3, stec.) to average over random textures. His
multiples operator scheme supresses non-maxima over 2acn set of operators

of a given size., Then over asach area, the largest operator giving 2a

strong gradient s selectad, suppressing smaller operators in the saze

area. In Rosenfeld's paper it can be seen that in textured environaents

this approaca nas the desired effect. However, in the domain of machine
parts, where objects themselves display fine detall, Rosenfeld’'s
h, algoritha for awultiple edge detection does not work. It is to this

problam we address ourselves. ‘

An alternative definition of an "edge" is any intensity pattern
which fits an '"edge" template. The discrete difference mask used by
Roberts could te viewed as a trivial template. Selaction of a2 maxinum
polnt could ve viewed as selecting 2 polnt where the difference template
correlates with the Iimage maximally. Several operators of a more

complex nature come about by viewing edges in this light.

The operators of Yakimovsky assume edges are interfaces between
sets of points, each set being described by 2 normal distribution. [ne
aathematics for distribution parameter comparison is used to fora a

function of edge strength in an area.

2.2.1. (‘-.z)m"

()" (69"

$ < tor N(H-;SI)-*N(H;: )

)

where:

‘:’: variance for both neighborhoods taken together

= (md>¥+ v\ﬂ‘* m (M.’M,)"*n(M,-H,)’]‘._/(M-rn)

4
MNe = mean for both neighborhoods taken together

S (o + 1) (mon)

3 m,M, . 6;1 = samples, mean, variance for neighborhood 1

samples, mean, variance for neighborhood 2

2
"!H;)JS




5

,.4-.-
.

p—a

=3

We have, for comparison purposes, programmed an operator of this
sort with non-maxima suppression, using the neighborhood shapes proposed
in [66]. It should be pointed out that the operator of Yakimovsky is in
fact a superposition of the standard expressions for comparing means
(30],

t
6, (m+n)

wm 6> +ng,”

2.2.2. s <

) ‘f" Hr#f“:..

and comparing standard deviations,
RN
(Mé}’-rn.ﬁ")'“"" ) Tor '# L
>

This points up some problems. The mean coaparison component

2.2.3, s>

behaves well when the operator is not centered on an edge interface (the
mean comparison is more or less a finite difference, therefore an
approximation to the gradient). However, the sigma component peaks at
interfaces where standard deviation changes and on both sides of ones
where the mean changes. This can cause false edges to be detected. The
statistical assumption of two independent distributions is valid only

right on surface-surface interfaces.

The operator of Hueckal [22]([23]([24] comes about by expressing a
family of templates in terms of an orthonormal family of functions. We
have programmed a version of the original operator, but have been
thoroughly disappointed with the results. From the paper of Mero [43]
it can be seen that the Hueckel type approach can be done with different
basis functions quite efficiently. We have reason to believe that the
original basis functions of Hueckel are less than satisfactory and the
ones proposed by Mero are more advantageous. Using these basis
functions it was shown that the Hueckel type operator is more or less
equivalent to a gradient. It should be pointed out that like the
gradient, on gradual intensity slopes thick edges (more than a single
point wide) occur. Also, angular resolution for this type of detector
turns out to less than one might expect.
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The point to be drawn from the previous discussions is that most of
the techniques proposed do not differ substantially from a theoretical
point of view. Practically, performance is more a function of operator
geometry and image noise statistics than the models selected for edge
strength computations (all model thus far discussed eventually reduce to
subtraction of neighborhoods). Our system uses a variable geometry to

average over image noise.
2.3. Difference-Based Multiple Operator Technique

This edge detection system 1is based on the simple step edge
detector, Detection of steps, that 1is, places where intensity
distributions each having different means meet, can be accomplished
optimally by simple differencing. The basic difference is then scaled
by a factor involving the standard deviations of the two distributions
or heuristically, a term based on the variation around the mean change
(see formula 2.2.2). The formula may be slightly modified as follows if
we assume equal neighborhood sizes and take 6 =z¢,=6 {the standard

deviation for the overall image).
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As noted in section 2.2 using the moments 6, and &, to characterize
texture is dubious because these terms respond ver§ strongly also to
mean variations, therefore we feel it reasonable to simply do the above
scaling. If we assume ! as the threshold for neignborhoods consisting
of a single measurement then for neighborhoods consisting of n

mesurements we expect the following:
2.3.3. Ty s tfu | te R/ RS

2.3.3 is the result we would expect for purely Gaussian
distributions, however our work indicates that the square root law
actually generates thresholds that are too low. As a fix we can choose:

2.3.4. T(n) = -t[(n—ﬁi")k + f'i—]
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For our imaging system we nave found thresholds plotted as boxes in
§ Figure 2.1 are quite good (kz0.6). The constant « can be considered the
degree to wnich difference due to "noise" accumulates linearly rather

i than normally.
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N = Nelghborhood Size

Plot of T (£dge Detection Taraeshold) vs. N (Sample Size)
Figure 2.1

b As {s the case for any difference-based detactor, there will

typically be several adjacent points wnere adge strength is greater Lnan

i T. We only want bands of width one. To accomplish tnis we observe that

what goes up aust come down, or the value of X in 2.3.1 alternates sign
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for each new step. A peak is recognized as all the points where X 1is
greater than zero, or all the points where X is less than zero. The
center of the peak is either its absolute maximum or its center of mass
(generally either measure is relatively noise free and nearly located at
the same position)., The center of mass method is better in that it
allows positioning more finely than the basic pixel size. Both methods
yield edges of width one.

The use of relative maxima rather than absolute maxima thinning has
been used extensively and is really at the heart Rosenfeld's notion of
non-maxima suppression. The problems of using pure relative maxima
techniques 1is clearly shown in Figure 2.4. In Figure 2.2 we show an
intensity profile. Figure 2.3 shows peak selection using either the
center of mass method (CM) or the absolute maximum method (MAX-MIN).
Figure 2.4 shows multiple peaks detected where only one should be using
relative maxima detection.
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4 " In short, the single detector indicates one edge per peak for any %1
peak having points with an edge strength greater that T. We have thus ‘
far restricted our discussion to one dimensional step detection. To u
expand to two dimensions, the one dimensional edge detectors are swept L
along each horizontal and vertical line, generating two basic edge
directions (more orientations may be used in principle, however two is

the minimum required).

The sweeping operation is performed for several sized operators at i!

the same time, the larger differences being incrementally computed from J
the smaller ones (Figure 2.5). Larger sized differences allow more l;;
discrimination for diffused broad intensity transitions, such as those .

found in shadows cast by non-point sources and highlights. The fastest );‘
transition detector that has strength greater than its corresponding T
marks the edge position. All detections from larger detectors are
disabled to prevent feature smearing. Many low contrast contours can be
discriminated only by detectors using many cells averaged (note Figure
2.1, the larger the operator sample the lower the effective threshold T
per sample). Also the marking detector index number becomes the edge
diffusion size (proportional to the edge peak width). Figure 2.6 shows [
a typical intensity profile. Figure 2.7 shows the output of a small _
detector. Figure 2.8 shows that a larger detector is able to pull more N

contours out of the background noise than the smaller one (Figure 2.7).
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The prefarance towards small detactors I8 analogous to Marr's
requirements of adge isolation, in the generation of his primal sketches
(32]0331(35] (really edgs detected images). We wisn the simplest
axplanation of intensity phenoaena. To accomplisn tnis we need Lo
assume zinimum interaction betwaen edge detector outputs, i.e. Lsolated
edge steps. The simplest way to minimize detector ovarlaps is to use
the smallest detectors that give non-noise detections. If two small,
isolated detectors fire (i.e. two successive edges), and over the same
region, one larger detector fires, the simplest explanation is that tne
large detector is firing due to both small edges. Figure 2.5 shows now

an operabtor can be large =nough to smear together lsolated edges.

Difes
9.0
-8.90
~18.0 Previously
Isolated
Sdges
~-32.0
-84.0
9.0 100.0 200.0

Pixels

An Operator Large Zaough To Smear Zdges
Difference, 3izez12
Fizure 2.3
We may adjust the nolse model (method of computing T for each

detector) and the raags of detectors (typically sizes ! tarough 5) to

fit a wide variety of imaging systems. It is our experience thah LUhis
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is a shortcoming of most other detection schemes. Contrasting this
system and the system proposed by Rosenfeld [52]{53] several major
differences are apparent. In our scheme operator sizes are chosen in a
linear sequence rather than a geometric one. The smallest operators
have proportionally more influence than the larger ones, rather than the
other way around as in the Rosenfeld scheme. In our system, low
amplitude, random texture is ignored via an i{mage noise model. We also

characterize the size of the transition region for the intensity change.
2.4, Adaptive Threshold Multiple Operator Technique

After getting good results from the previous system of edge
detection we wondered if we could get better results after some form of
second order image enhancement. To our chagrin, the results were much
Wworse. This was because tLhe enhancement caused ringing at strong
intensity steps. This ringing was picked up as '"peaks" in the
difference space and therefore caused multiple edges wnen of sufficient
amplitude. These problems caused us to consider a non-differential
approach to edge detection which is interesting for several reasons.
First, the implementation is extremely fast and extremely simple. Peak
selection and thinning are almost trivial. And last, the detection
scheme has very nice lological analogs (works better with more
enhancement, displays mach-band responses).

The first step is to compute from an input image a "fast" image and
a "slow" image. The slow image is formed by computing the average
intensity of a large neighborhood (in our case 20 by 20) centered at
each cell. This picture is basically an artificially defocused image.
It may be thought of as a "threshold" picture where each cell (s
proportional to the average light level in the larger neighborhood.

The fast picture is an edge enhanced picture. We do the
enhancement i{n the X and Y directions independently using the function
in Figure 2.10 evaluated at every cell position along a line orthogonal
to the direction of the edges being extracted.
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Enbancesament Function
Figure 2.10Q

The slow picture (s then subtracted cell-wise from the fast
plcture, generating 2a new picture which is zero in homogeneous regions
and at edges, non-zero around edges. AL this point we nave computed a
quantity 2analogous to the "lightness" proposed by Horn in [21], when we
consider that the subtraction Ls actually coamparable to 2a division
] because of our imaging system. This system has 3 log of light-level
response (Figure 2.11 - this is generally true for vidicon ‘magers).
This picture is then thresholded at plus or aminus some threshold T. All
cells witn value V, =T < V < T are set to CO. Calls with value V, V> T
are set to 01, and cells with value V, V ¢ =T are set to 10. In this

way we obtain a thnree level picture (10,00,01),

3
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g£dge extraction along a line now becomes a simple binary pattern

matching process. An edge may now be expressed as:

2.4,1, <01><00 00 ... 00 00><10>

or

<10><00 00 ... 00 J0><0®»
The central string of 00 codes may have length zero for the fastest
transition edges, or up to N where N {3 the longest acceptable
transition. The leading 01 or 10 codes may be repeated. The irst
pattern corresponds to a negative going edge, the second, to a positive
going edge. For each size edge template (sizes 1 to N), we sweep the
three level pictures in the X and Y directions. vWe light a bit over
each position where an edge template matches (there are N bit planes,
one for each size template). Figure 2.12 shows an {ntensity profile,
the defocused intensity profile, and the enhanced intensity profile.
Figure 2.13 shows the subtracted profile, with peak areas marked(+0-

three level data).
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As indicated earlier, peak selection and thinning in the edge bit
planes is trivial. Any cell in a given bit plane belonging to a string
of edge points of lengta greater than two should be ignored. (There
will be edges from edge templates with fewer 00 codes marking the step,
having a run length of two or one. This s an isolation condition,
analogous to small edge detectors preempting larger ones in our
difference-vased tecnnique.) If a string of two is encountered, the
position of the actual edge is between the two marks. If a singleton
string alone is present, it directly marks Lhe edge. We simply record
mark position for edge position and bit plane index for transition
region size. A hypothetical hardware implementation for one 1line of
detectors is quite illuminating (Figure 2.14). We think the similarity
in geometry between this structure and ones observed in biological
visual systems is interesting.
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Mach band response in this detector scneme comes about as a result
of the second order enhancement used in generating the "fast" image.
This enhancement causes the results in Figures 2.15-2.16, when the ramp
breakpoint 1s sufficiently great to produce peaks of greater amplitude
than T (tareshold marked in Figure 2.15),
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Figure 2.17 shows the images from which previously displayed

3 intensity plots were derived. White lines mark the various slices.

Figures 2.2~2.4 Figures 2.6-2.9

L
3 ] Figures 2.12-2.13

Figures 2.15-2.16

Images Used For Intensitv Plots
Figure 2,17

2.5. Performance Evaluations

To test the relative merits of our two edge detaction schemes and
those of several other researchers, we have prepared several
characteristic test images. The first six are computer generated
intensity ramps, one set of three vertically oriented (Figures
2.18-2,20), and the other set of three diagonally oriented (Figures
2.21-2,23). The first in each triple has no additive noise. The second
has Gaussian noise of 3=0.5 (nominally the noise induced in a
quantization system - the nolse levels encountered in our real images).
The last in each set have Gaussian noise of Sz1.0. These pictures test
nolse immunity, the degree to which edge detectors can follow diffusing
steps, and to a limited extent, orientation bias.
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We have also digitized some characteristic images taken in our
laboratory to test the various edge detection techniques under more
practical conditions. These images are 252x238x6 bits and have
typically +!1 or -1 level random intensity variation (occasionally +2 or
~2). Figure 2,24 tests repetitive edge detections. Figure 2.25 tests
the degree to which orientation and operator size biases affect small
bodies. Figure 2.26 tests interactions between edges of different

orientations. Figure 2.27 tests operator performance in a scene with a
wide range of intensity values and edge transitioa sizes (highlights,
shadows, object-object, object-ground interfaces).

For the tests we have implemented, in addition to our two detection
schemes, a Hueckel operator [23], a faster Hueckel-like operator [u3], a
Yakimovsky operator [66] with non-maximum suppression, a Rosenfeld
non-linear operator ([52][53], and a simple gradient detector with
non-maximum suppression [7]. The rules of the game are as follows.
Each detector is tuned using the S=0.5 artificial pictures so that
performance s acceptable. If not acceptable, at least as good as
possible. Then the operator is applied to all the other test pictures

using the same confidences and thresholds.

We intend the reader to examine the various edge pictures and draw
his own qualitative opinions on the relative merits of the various
techniques tested, however we offer some discussion of our results and
several quantitative measures (these for the constructed images). Table
2.1 tabulates correct and incorrect edge denajties for each operator.
Table 2.2 tabulates the 1length of diffused contour followed by each
operator (1.0 if contour is followed across the entire test picture).
Table 2.3 tabulates positional variation for edges per unit length along
the diffused ramp. Table 2.4 suggests the minimum stripe size an
operabtor can detect without smearing (size in pixels).
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Iable 2.1. Edge Densities

Operator i False Detections i True Detections
Name ‘ Per Unit Areat® Per Real Edge®
Hueckel 0.03 Q.34
Psuedo-H### 0.0005 0.56
Yakimovsky 0.004 0.73
Burr 9.02 0.19
Rosenfeld 0.0005 1.0
Diff . #uda 2.002 0.97
Adapt  #asas 0.03 0.19
* Note that True Detections Per Real Ed also reflects

e

sensitivity of the specified operator to éiffused ramps (soame
operators nave trouble following the diffusing ramp very far,
therefore score poorly).

" Tnis reflects ambient noise level in the S=1.0 pictures
{(non-central ramp edges - 1i.e. edges that should not be
detected).

*%%  Hueckel-like Operator (Appendix A).

#a##% Difference-based Multiple Operator.

#4288 Adaptive Tnresnold Multiple Operator.

Table 2.2, Zdge Followine Lengths

Operator | Diagonal Length®* | Vertical Length
tHueckel 0.2 0.4
Psuedo-H .2 0.62
Yakimovsky 0.47 0.77
Burr 0.19 0.19
Rosenfeld 1.0 1.0
Diff. 1.0 1.0
Adapt. 0.19 0.2
* Lengths are scaled by total diffused contour length.

Table 2.3. Positional Variation Along Diffusing Ramp

Qperator | Positional Variationt
Hueckel 0.09
Psuedo-H 0.11
Yakimovsky 0.15
Burr 0.20
Rosenfeld 0.09
Diff. 0.00
Adapt. 0.05
* Distance variation orthogonal to diffused ramp scaled by raap

length.
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Table 2.4, Minimum Stripe Size

Operator | Stripe Width /Cells)
Hueckel » T
Psuedo-H g:;‘
Yakimovsky -3
Burr =48
Rosenfeld =248
Diff, 18448
Adapt. 38
. Set by basic neighborhood size.
" Set by smallest neighborhood size. Note, however, due to large

ogerabor preference, mang times operation in areas with small
strips i{s dictated by he largest neighborhood. In this
implementation 16x16.

#4%  Sat by smallest neighborhood size.
2.6. Sensitivity, Noise Immunity, and Shape Deformation

If by sensitivity, we mean ability to detect gradual gray scale
transitions, clearly the Rosenfeld, Yakimovsky, and our difference based
operators are the best. The Yakimovsky does well because of a large
neighborhood size. This will be a draw back in detecting smaller
features in scene. Both our operator and Rosenfeld's do well in the
domain of diffused 1lighting because they both have the ability to
average over large areas, thus detecting small gradual changes. The
Huecikel and Hueckel-like operators are a disappointment. With such
large neighborhoods (9x9) one would hope for better gradual slope
detection. Possibly, this can be explained by considering that these
operators are quite finely tuned to detect step changes. The gradual
slope generate too low a confidence step.

In the real pictures, the results with respect to sensitivity seem
to corroborate those from the artificial images. The Hueckel and
Hueckel-like operators are universally less sensitive than the various
difference-based operators (Diff., Adapt., Rosenfeld, and Burr). In the
line picture, many lines detected are single (instead of paired), and
miss directed segments are common. In dots, the dot shapes are badly
smeared and deformed. Directional interactions in the grid picture seem
to occur at each vertex. These operators do the best in the metal
cylinders, but still not better than the other techniques.
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The Yakimovsky operator, on real pictures, tends to smear small
detail as is to be expected with such a large neighborhood operator. In
lines, double lines become single lines. In the dots shot, each dot is
enlarged and flared at the corners. (Corners on a round dot? See for
yourself.) These flaring corners come from the peculiar neighborhood
shapes proposed for this operator [66]. The grid shows the same signs
as the lines picture (singles where there should be doubles). In the
metal cylinder picture, we get a good outline but are weak on internal
details and shadow completions. Yakimovsky's operator is better than
the Hueckel and Hueckel-like operators, but is less effective than the
difference-based techniques.

The Rosenfeld non-linear operator does very well for somethings and
poorly for others. On gradual vertical ramp detection, it gets nearly a
perfect score. For diagonal following, as the ramp gets further
diffused, =odge position varies wildly. This occurs in part due to our
use of only two orientations. The diéggnal orientation causes the
vertical edge peaks to be displaced from the horizontal peaks due to the
square shape of tne averaging windows used in differencing. More
orientations in the detector system could nelp. Also narrow

(non-square) averaging rectangles would minimize the problem.

In the real picture the Rosenfeld operator does poorly because its
large operator preference causes it to loeck on lighting (metal
cylinders) effects or line density (lines) effects. We have not
included textured pictures as in [52], though if we had this operator
would have performed well on them. Basically we see a common ‘dea being
applied to two different problems, getting rather different resuits.
The Rosenfeld strategy is to bias a multiple template detection scheme
towards the large operators, to average out textures. Our
difference-based tecnnique s biased towards the small operators which

are significant, to detect all fine structure without undue smearing.

The Burr techniques and our difference-based technique are very
similar. Burr's detector has the same shape and size as our detector

number 3 (Figure 2.5). We used center of mass or absolute maximum peak
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selection, while Burr uses relative maximum. This explains Burr's lower
noise immunity. Being a single, small neighborhood, Burr's detector has
prodblems when a edge becomes to diffused. This shows in the ramp
pictures and later in the metal cylinders picture (Note the left most
shadow in our difference-based output and Burr's. He misses edge points
critical in completing the shadow contour because they are too diffused
and weak).

Our difference-based operator does well on all the test pictures.
The position difference between vertical and horizontal edges in tne
diagonal test pictures occurs because on diffused edges, large operators
are required. These operators fall off the end of the picture if the
ramp is too close the border. The cells off the picture are set to the
value of the last cell on the border of the picture. This is not a good
heuristic. Therefore, the positional inaccuracy is not due to the basic
operator itself. We should not be operating that close to the edge of
the picture with large operators.

Our adaptive threshold technique is about at the same lavel of
sensitivity as the Burr operator. This is because Burr subtracts cells
in multiples of threes and so does this implementation of the adaptive
operator. This operator has less noise immunity due to the additive
Laplacian (these operation are actually digitized second derivatives,
therefore nigh frequency and noise enhancers). On the other hand, it is
more sensitive in real pictures (note extra definition in the lower
eylinder of the metal cylinders picture).

We feel the difference-based operator, for an application requiring
the detection of both fine detail and diffused (shadow) contours, is the
overall winner. The only qQualification is that the user must be able to
select an accurate noise model (set of thresholds for minimuam

significance). Without this, the results go down under the nolise

easily.




] 2.7. Conclusions

The overall results of this study indicate that first, difference
base edge detection is not only the easiest to implement, most efficient

to run, but also in most cases the best, when coupled to a reasonabla

edge peak selection algorithm. Second, peak selection via a "global"
method (such as center of mass or absolute maximum/miniamuzm) is superior
to a "relative" method (relative maxima, non-maxima suppression).
Thirdly, several edge detector sizes are superior to one because small
ones c¢an adapt to fine structure and larger ones can pick out harder to
"see" gradual intensity changes. 3table Higher-lavel processing Is

based on solid, accurate low-lsvel measurement (Figure 2.23).
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Chapter 3

Intermediate Vision - Vertex-String-Surface Graphs (V-3-3)

3.1. Introduction

We will introduce novel algorithms for region (surface)
aggregation, boundary string following, and vertex detection and
reconstructicn. In our view, visual recognition can be divided :into

three distinct 1levels. The first is basic measurement, in this systea

edge detection and image sampling (Chapter 2). A system will be
fundamentally limited in discrimination power oy the dimensions of
measurement chosen. We have limited ourselves to a system using black
and white or color images (we process texture in a limited way), with
all pertinent :image changes characterized as steps (the position,
crientaticn, and transition size of each step is recorded). Image
dimensions are variable from Ix1x! bit to SOUxU75x3 bits, however we
typically nave used 252x238x5 bits (edge detection experiments in
Chapter 2) or 252x238x9 bits (following chapters).

The second phase i{s object-directed segmentation, or intermediate
vision, In this phase, we combine basi: measursments into primitive
groupings representing major object components. The object components
generated may be considered as objects in their own rignt, however
differ from learned objechs because tneir interpretation is fixed.

Basic measurenments have preprogrammed form and preprogrammed




interpretation {such as intensity steps, spots, color (feature vectors,
intensities). Object components have preprogrammed wmeanings, but
variable forms (regions - made up of an arbitrary collection of adjacent
feature and position measurements, boundary strings - made up of a
collection of adjacent intensity step points, vertices - made at the

coincidence of an arbitrary number of strings endpoints).

The third phase is object formation and recognition. This will be
dealt witnh later (Chapters 4 and 5). Learned objects have variable
forms and variable meanings. In practical vision systems, there are no
such things as impossible objects [25]. All objects that are formed by
data measured from the real world are possibla and must be represented.

Our system for intermediate vision reads edge data, transforms this
to edge and region data (still in pixel format). These two forms of
information may be passed to texture processurs or shape processors.
Texture processes transform edge information (masked by region data)
into smoothed images for further edge detection. Shape processors
superimpose adge data from multiple sources {(region differentiations,
intensity edges, colored image edges, or Lexture image derived -edges),
and extract contours  and vertices in the form of the
vertex-string-surface graph structure (V-S-S). Further scene to scene
matching and recognition 1is done with data encoded in these V-3-3
structures alone.

3.2. Related Work

Compared to work in low-level vision, relatively 1little work has
been done in intermediate vision. The work of Marr on occlusion, depth
extraction, and texture is significant [31]. Motivated by
neurophysiological results Marr proposes measurements in the form of a
primal sketch, basically a map of edges. The measurements in the primal
sketch are then correlated together for various texture parameters,
contours, symmetries, and depth primitives. The proposed texture model
is based on histograms of edges and connections between near edges

(histograms of either directions of edges and connections or sizes of
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edges and connections). The critical idea in Marr's work is that vision
consists of forming symbolic descriptions of visual forms at every level
of representation, not simply at the level of object descriptions. In
tnis way Marr's ideas and ours about object components are very similar

even though, in form and process, they are somewnat different (wnile

again proposing a different computational attack, Waltz also shares this
affinity towards symbolic low-level vision).

Some work has been done on region growing algorithms which
incorporate some concept of figure "goodness". The Brice and Fennema
region grower merged to minimize perimeter growth, therefore favoring
compact regions [6]. The region-based system of Tenenbaum used a priori
information to partially control region merging [60]. Feldman and
Yakimovsky also have pursued region-based techniques which incorporate

semantics, via a Baysian strategy [14].

In the arsa of contour extraction and codification very many ideas T
have been examined. Martelli uses an optimization technique, coupled
with potentially extensive search to find optimal contours ([40]. Very
many chain encoded contour techniques have been used. Techniques based
on Hough transforms have been used both in domains consisting
exclusively of straigi.t line segments and those having limited, but more

general segment types (46].

Corner detection in most cases, has been done by inference from
contour data [16]{47]. Some work has been done on direct corner
detection [12]. We have found that any attempt to directly detect
corners in image data i3 relatively insensitive. In both corner
detection and contour codification, the idea of curvature arises.
Curvature information extracted from a fixed grid system is both a
function of the underlying curve and the image sampling system. This

interaction has been studied for some pixel spaces [5]. 1

From a computational point of view, the most common algorithms at
the intermediate level have been simple and sequential [48]. However,

some nave used searches with backup [58]. Much recent intereéest nas been
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shown in relaxation algorithms [S4). Primarily those with probabilistiec
interactions nave been used. Examples of symbolic relaxation have been
employed at a higher level [63].

We will first examine region formation from edge point data, We
will then examine our method for integrating edge data from several
sources with region data for the boundary-vertex extraction process.
V-35-3 graph formation will be discussed, followed by some notes on

multi-color processing and texture processing.
3.3. Regions

Artifast vision is object oriented. Objects may be viewed as
collections of surfaces which enclose volume. Each of these surfaces
project onto the image space as one or more two dimensional regilons,
each having relatively homogeneous characteristics. Most commonly
observed objects have surfaces which are compact (convex-connected), or
have surfaces which are easily decomposed into compact subsurfaces.
This indicates that our algorithms for region aggregation on the Lmage

space should, whenever possible, be biased in favor of compactness.

Biological vision systems seem to be sensitive to figure-ground
relationships. By tnis, we mean that regions in the two dimensional
image space can be ordered by relative embedding relationsnips, which
correspond to object level-background level separations. Objects are
figures with respect to the actual background. Painted surface details
are figures with respect to wmajor object surfaces. Highlights are
oright figures with respect to surface details or object surfaces.
These embedding relationships can sometimes be thought of as links
between levels in the dendograms generated by a traditional intensity
region merging sequence (29]. In general however, these relations are
purely geometrical. For object component region generation embedding
relations should be recovered, and used in the region growing scheme if
possible.
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Strict intensity-based region Irowing scnemes have a tendency to
either generate large numbers of regions when severe thresnolds are
used, or a smaller number of regions, where each actually corresponds to
more than one object surface, when loose thresholds are allowed (Figure
3.1b-c). In fact, places where several object surfaces tend to merge in
reglon-based processing, are also places where edge detection systeams
fail to find high confidence edge points (Figure 3.1d).

A) Sample Scene;
B; Regions From Strict Threshold Systenm;
Regions From Loose Threshold System;
D) High Confidence Edge Points.
Figure 3.1

To remedy the problem of low confidence local data, some form of a
priori information needs to be incorporated. Sometimes scene related
information has been used, however, this restricts generality from scene
to scene., We have chosen to build our region aggregation system around
the idea of figure "zoodness". That is, we maxe regions which tend to

be locally compact.
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3.4, HomogeneilLy

We have defined nomogeneity in a domain or area to mean absolute
absence of high confidence edge points. In short, our region
aggregation scheme consists of assigning unique region numbers to seach
connected homogeneous area. All non-homogeneous aresas are then
classified by several schemes Lo refine the shapes of the homogeneous

reglons.

The larger the local domain used for nomogeneity computations, the
larger the langth of aissing edge data that can be completed (Figure
3.2). However, the larger the operator size, the more sharp curvatures
are modified (Figure 3.3). We use digitized approximations to disks for
the basic homogeneity operations for computational ease and to minimize

boundary shape biases (Figure 3.4).

Homogeneibg Operator Passing Tarough A
reak In Edge Data
Filgure 3.2
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Area Of Non-Homogeneitg Around A Corner
Figure 3.3
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Shapes And Sizes Of Local Homo&eneity Neighborhoods
Figure 3.
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Note the arrangement of pixels and edge points in Figure 3.5.
Edges come in two «inds, vertical and norizontal, each betwesn pixels.
The edga positions inside the domain Dboundaries are checked in thne

homogeneity computations.
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Pixels in Edjc loor dinates

Edge and Pixel Coordinates
Figure 3.5

3.5. Region Sweeping

To form regions, we sSweep a homogeneity operator (one froam the set
in Figure 3.4), uniformly over the image space. As edge points enter
the domain, a counter !s incremented. As they leave, the same counter
is decremented. Tne cells in the homogeneity disk are marxed (set to a
region number) if the counter is zero (i.e. centered on an area
including no edges). If the counter i{s non-zero, the next homogeneity
position is evaluated. As an efficiency, the .Lmage space is divided
into 32x32 sectdrs. After all the cells in a sector have been marked, a
bit in the corresponding location in a 32x32 map £Ls set, preventing

further evaluations within the sector.
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The marking operation also involves generation of region numbers
(these numbers are the marks, recorded in a "region" image, where sach
pixel contains an index into the region property table). There are
three aethods used for generating numbers. The easiest is used if none
of the four cells adjacent to the central cell has been assigned a
nuaber (Figure 3.5 - We do not consider cells on the diagonal to be
ad jacent because there is not a shared edge position). In this case,

the next sequential number (and region table entry) is assigned.

Cohltl

The second easiest case cccurs when only one region number occurs
in any or all of the adjacent cells. In this case, the region nuamber
assigned is this number (thus smearing the region along). The difficult
case occurs when there are several different numbers froca which to
choose. In this last case, all the regions indexed that have been
formed previously in this sweep (or pass), are "merged". The merging
consists of selscting one of the indices as a root index (this becoames
the index to be used for new marking), and modifying the table entries
for all the other region indices to M"point"™ to the root entry.
Therefore all the non-root entries become "aliases" for the root number.

In this way we avoid renumbering previously marked cells.

If some of the region indices adjacent to the <central cell
represent regions formed in a sweep other than the one currently being
performed, siaple merging would not always be appropriats (next
section), In these cases, an assoclation Ls stored between the old
rezion entries (from prior sweeps) and the new one (formed this sweep).
When a s9single pass is finished (an operator has been evaluated over

every unmarked cell), these assoclations are examined.
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It should be noted that region number propagaticn occurs tarough

only the directly adjacent cells, however, cell setting occurs over the
é entire homogeneity disk area., This little trick makes it necessary for
' any edge string breaks to be on the order of the diamater of tne

homogeneity disk before the two different regions are jointed. Also it

causes the remote possibility of setting noncontiguous areas to the same

rezion numbers.,

The sweeping operation occcurs for each different operator size from
the largest to the smallest. Following each sweep pass, region table
space is reclaimed and cells are reindexed ("aliases" are coampressed
out). The larger the operator allowed to aggregate a given region, the
larger the breaks in edge data that can Dbe tolerated. Also, some
classes of subjective contours are generated because of compact area

enclosure (Figure 3.7).

1 o
-

Subjective and Real Contour Completions I”
Figure 3.7
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3.6. Region Noise, Ambiguity, and Corners

There are some striking similarities between this scheme for region
aggregation and the edge detection techniques previously discussed
(Chapter 2). In the edge detection scheme, small detectors control the

process. In the region system, larger operators play the same role. In

the edge detection scheme, small operator outputs are evaluated against
a noise model to determine their significance. Similarly, the regions
formed after a sweep operation need to be checked for significance.
This is done in two ways. The first and most obvious requires regions
to be of significant size. The size parameter wWwe have used in our
experiments is nominally 50 cells (out of 252x238). This significance
dimension tends to become important for sweeps with smaller operators
(size 3,2, or 1).

A slightly less obvious significance parameter arises from the
relative sizes of the homogeneity operator and the region aggregated by
this operator. If the operator 1s toc large (diameter approximately the

same as the smallest body crossing chord), one region may be broken into

i i

several parts (Figure 3.8). It is easier to get such things right than
- to patch them up later so we have defined the following parameter:
i 3.6.1. P = (4+ arcq./pcrmmr>/( Siges2)
! If this ratio is greater than a threshold, the estimated region diameter
* (4®area/perimeter) 1s siznificantly greater than the operator diameter
(size*2), and therefore this region is significant. This significance

(2

test tends to eliminate undesirable large operator aggregated regions.
The threshold we use is nominally 1.0.




D

A Region Broken By A Large Homogenelty Operator
Figure 3.3
Following each regiod generation sweep, during regicn table space
compression, we have the oppertunity to reassign region cells to
"unprocessed™., If a region ls computed Lo be insignificant, its cells
are 8o marked, and the corresponding entry in the region tablas is
eliminated.

If sharp curvatures exist in the bounding ccntours of a region,
there will be areas abt these corners where large cperators will fail.
Successively smaller operators will be able Lo succeed in such areas.

However, the smaller cperators will tend tc give incorrect results due
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to the facht that near Gthese corners aizh confidence edges will be absent
(Figure 3.9). It will be Zenerally difficult to determine where the
small regions abt corners should be incorporated. We would merge thenm
into an adjacent region if such a merger was unique (i.e. the small

region is assoclated Lo only one other region - Figure 3.10), but when

uniqueness s not met the ambigzuity is not easily resclved. In this
ambiguous case cells in the region are marked as ambiguous, and left to
be processed in the final refinement passes following the sweep of the

homogeneity operator.

P

Small Region Near A lorner Witnh
Ambizuous Possible Merges
Figure 3.9




Small Region Near A Corner With
Only One Possible Merge
Figure 3.10

By now the reader has probably realized that Lthe post pass
following each region sweep is actually a bundle of xludges (more
poiitely, heuristics), designed to take care of some of the more
pathological problems posed by the homogeneity operations. The last
operation done in this nost pass s to kill any small group of cells set
to a particular region number, but not connected to the main mass of
that region. Recall that this ‘defect comes 3about f{rom the reglion
setting and propagzation method. An advantage of simple convex shapes

like disks is that the problem of these noncontiguous sets is aminimized.
3.7. Final Region Refinement

After sweeping wihth all avallable homogeneity operators, some cells
will either be unmarked (near some region bounding contours) or markad
as ambiguous. We want all cells classified as part of a region,
therefory we have included a series of passes Which assign cells

ad jacent %o established regions to the regisca Which tne CJellis are
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nearest to in intensity space. This is similar to traditional merging,
intensity-based region growing, with the exception that no new regions
are formed. Usually no more that 15 passes are required on 5 percent of
the image space (due to the sector marking scheme), or approximately 15
seconds of processing (quite fast compared to region generation). This
intensity growing algorithm s capable of recovering contours near

vertices quite well, certainly better that the original edge detectors.

The final result of the region system s a3 picture of region
indices and a list of regions and region properties (Figure 3.11)., We
accumulate area, perimeter, centers of @ass, intensity verage,
intensity standard deviation, roughness, and order (operator size which
formed the region). Regions are analyzed to determine their relative
lavels of embedding. We are primarily concerned with level-0 embedding
which represents the main background (such as 3 table top or floor),
level-1 embedding which represents all object details (this (s all
levels between level-0 and level-2), and level-2 eabadding whizh
represents highlights and the innermost surface detalls (this level may
not be present, and may not be tangent to level-0 regions). Figure 2.28
shows two views of a block (A), the edges detected (B), and the

boundaries which correspond to region differences (C).
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Region Token and List Structure
Figure 3.11

3.8. Image, Edge, Region Data Merging

The construction of boundaries and vertices can be divided into
three main processes. The first is merging input edge data from several
sources: the original zray scale image, the edge detection data, the
region maps, and texture processors (after edge detection on texture
smoothed images). The second is actual boundary and vertex
codificaticn, Last 1is smoothing and reorganization of data into the

final vertex-string-surface (V-3-3) graph structure.

The merge process reads the image, the edge Images (these have one
adge position for each pixel interface in tne original image), and the
region image to produce an edge list. fach point in tne output edge
list may be accessed directly by its original positicn on the rastinal
space by a simple array reference {(each Y coordinate has an array slot

pointing to an X 2soordinate sorted list of endpoints) followed by a

Region ////// X & Y Edge // Perimeter érder
I
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binary chop (locates the edge in a selected X coordinate sorted edge
list). The region data is wused 2as a template for edge data. Any
position in the region picture where region numbers differ, an edge is
indicated. If a real edge point exists near this position (i.e. is
marked near by orthogonally froa the corresponding position in the edge
images), an edge is entersd into the output lists as a region separator
edge (region image indicates two separate regions) and inherits the
properties of the real edge. If no real edge is near the region
separation, a subjective edge is entered into to output lists., In this
way, all region separator 2dges are recorded lnsuring completely bounded
regions.

Any real edge points marked, in the edge images, but not absorbed
by region separations are output as non-separator, real edges in the
output 1lists. These c¢an correspond Lo incomplete boundaries, or
internal creases on a surface. Non-separator edges are more suspect
than separator edges as possible noise points. Subjective, separator
edges are more suspect in positional information, because the region

aggregation process simply put them where it wanted them.

The gray scale image is used to compute the intensity average
immediately on both sides of edge points. The intensity is sampled at
1/2 the transition size of the edge point on both sides of the edge.
Subjective edges are taken to have a transition size of zero.

3.9. Vertex Detection and Boundary Codification

Vertices are really discontinuities in several dimensions. They
are discontinuities in image intensity (as are edge points). They are
discontinuities in direction (i.e. sharp boundary inflections), and in
topology (separating two or more regions, two or more strings). By
string we mean "macro" edge points. That s, chains of edges which
connect end to end and have only two end points (terminating in
vertices, looping back to each other, or terminating in free space). To
find vertices we really want to find points where all the above

discontinuities coexist.
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First wWwe attbempt to attach each edge endpoint to another edge
endpoint in a reflexive manner. By this we mean, if endpoint A can only
be connected to endpoint B, and endpoint B can only be connected to
endpoint A, they can be connected. A connection neighborhood is
expanded about each edge endpoint as in Figure 3.12, Possible edgs
connections are checxked abt sach order of sxpansion. When reinforcing
sonnections as in Figure 3.3, are found, reflexive Llinking occurs.
Edge endpoints <involved in more complicated connectlon geometries are
flagged as possible entries into vertices. A new vertex number Is
assizned for each of these areas of connection ambiguity. In effect,
these possible vertices are detected whers topological discontinuity Ls

locally indicated.

Connectlon Neighborhoods, By Order
Figure 3,12

TSI T T




e R NI B R v T, e e o e,

Z!..’efa(

Reinforeing and Nonreinforcing Connections
Figure 3.1
After all reflexive linkages are made, strings may be assigned by
finding edges marked as entering vertices at one end and reflexivelv
linked chains on the other end. The reflexive links are followed to
find the successive edges to be bound in the string. Circularly linked
chains will still be left. These are brokan by artificial vertices and

processed in the same manner as non-clrcular chains.

Some vertex clusters will be simple groups of edge poiats, with no
string connections, or O-degree vertices. Some will be 1-degree, with
only one string connection. These types have no topological

significance and can be dlscarded. 2-degree vertices can be sither
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noise generated or real. Some that are real will not be detacted by the
simple topological discontinuity criterion. For this reason, 2-degree
vertices are also discarded, to be regensrated at points of high
curvature later. The appropriate string concatenations are then
performed. The vertices tpat remain are 3-degree and higher, and

relatively certain, but their positions are not accurately known.
3.10., Vertex Reconstruction and String Smoothing

Reconstruction and smoothing is a two pass operation. We first
compute accurate positions for 3-dezrze and higher vertices. 'We then
smooth and detect 2-degree vertices at points of maximum curvature. The

reconstruction and smoothing is then performad again using all vertices.

Vertex reconst}uction consists of computing the perpendicular

least-squares line fit* for each string entering the vertex.
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Two linearly independent equations are all that are required to
position a vertex. When more are available (3-degree vertex or more),
the system is solved for the best intersection point in a least-squares
sense,
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When vertex positions are fixed, a least squares line is fitted at
each point in the strings (Figure 3.%4). The A and B coefficlents are
used to compute a tangent angle. These angles are used to compute
change in angle with respect to arc length, or curvature along the
strings. Two degree vertices are recovered Dby examining these
curvatures. As in linear difference edge detection, an edge (in this
case a 2-degree vertex) is located at points where the difference
(curvature) is greater than a threshold T and maximum over a specified
domain (Figure 3,15). All the tricks used for edge detection are
applicable in this situation when scaled down to a single dimension
(along the string). In practice, we may use a single sized difference
operator with a single threshold and get acceptable results.
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Vertex Reconstruation
Figure 3.14
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oy

. ——- . e e e . —




67

After the 2-dezgrae verticas are aarced, we pesrfora Lhe the same
raconstruction algoritham on thea, followed again Dy the linear equation
fitting about each string point. This time nowever, eacn string point
{s repositioned aiong the perpendicular to the least squares line onto
that line, thus smoothed (Figure 3.13).

LA

Edges Along A String Moved During Smoothing
figure 3.1

Sometimes, incorrect nighly subjective edge strings cause false
vertices to foram, perturbing the positions of nearby real vertices (due
to our perhaps too powerful smoothing and vertex repositioning wmachinery
- Figure 3.17). This 1is corrected by a post pass which exaanines all
edge strings that are highly subjective (ones formed solely by our
rezion aggragation system, without adequate edge data corroboration).
dhen rejuired, these highly sudbjective strings are deleted, and the
vertex positions in the vicinity are recomputed. The region data base
remains unchanged by these Jeletions, therefore soae rezions may oaly be
partially surrounded by contour data. The alssing sections ¢orrespond
to areas where connection is assuzed, but wner2 the exact nature of that

connection is in Juestion.
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Subjective Contour Foraing A False Vertex
Figure 3.15

At this point we now nave a data base contalning 2all vertices
linked to the strings which fora thea, along with all entry angles. we
have the strings as property lists containing the average transition
sizes of their edges, the average intensities to the left and right of
their edges, the variations in intensity to the left and right of their
edges, the variations in the differences across thelr edges, the regions
separated by their edges, and indices to orderad lists of edge positions
and tangents, o describe the string shapes. Lastly, w2 have a region
list, containing the properties zsomputed by the region aggrezation
sub-systeam.
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Froam this point forward, all processing is removed from the
original picture space. All successive operations are perforsed on the
vertex-string-surface graph structure. Figures 3.18-3.24 show tne
images, images after edge detection, edges after vertex marking (X's
mark edges entering possible vertices), vertex initial and reconstructed
positions, distance moved by edges during smoothing, the V-$-S
structure, and the V-3-5 structure after a post pass (using Raaer's
m3thod to chop curved segments).

Images
Figure 3.18
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3.11, Notes on Additional Feature Dimensions

In most of the examples discussed gzray scale intensity data hnas
bean processed. de, for the most part, restrict ourselves to this
variety of data because it is the simplest to obtain. However, the

processing we have so far described is not limited to simple intensity.

Tne most obvious form of multispectral data is color. We obtain
color information by taking three picturss through red, green, and blue
color filters. Many workers have proposed the combination of these
spectra into hue and saturation. We choose not to do so because our
approach is to extract critical discontinuities (edges) and organize
thea (form regions, contours, and vertices, each with property vectors).
This can be done in the R-G-B space as well as 4in the hue-saturation
ona, In the R-G-B space, noise models 3are easier because they are
exactly the same as for intensity alone (directly a result of
digitization and sensor- noise). If R-G-B is transformed to
hue-saturation, noise functions are transformed and since ¢this is a
non-linear transformation, the noise transformation is non-linear. For
this reason Je choose, in general, to work with data in the fora

directly zenerated by sensors.

Any discontinuities, in any of the feature dimensions represents a
significant point. Tnerefore, these discontinuities can be extracted
indepandently and superimposed. In the set of all discontinuities, each
individual one inherits properties from 2ach feature dimension in which
it occurs (i.e. the tacit assumption here is that if discontinuities
co=-occur in different feature spaces, bu. at nearly the sane spatial
position, they are all generated by the same underlyinz process). In
this way, any system can not only be easily expanded to process color
(1.e. 1light sampled in three frequency bands), but a wide variety of
alternate feature domains also. Figures 3,25-3.26 show two color
pictures, and the corresponding red, green, blue, and coamposite edge

pilctures.
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3.12. Notes on Spot and Edge Textures

Tnis system of region, vertex and string encoding does not directly
process texture information. However, all ragions which can not bs
processeq 13 smooth are marked by the region processor as rough. These
rezions may be passed directly (roughness being a region feature vector
component ), or may be transformed to "samooth" by some texture saootning
process. de Dbelieve that "texture"™ is actually high-density shape
information. 3Snape information with higher density than can be directly

handled by the main line shape processes.

Wnen a reglon has been too "busy" for the region process to handle,
we use one of several primitive shape smoothers to fora images which
contain null areas for already smooth regions, samooth, non-null areas
for regzlons naving texture types compatible with the shape smoother, and
"busy" areas for reglons for which the shape smoother is in applicable.

These smoothed images may then be passed back through the edge
detection system, for edges between the smoothed areas, and these zdges
precipitated into the global edge images (busy edges in smoothed regions
are a2asked away). After all the «nown shape smoothing algorithams have
been passed over rough reglons, any still rough areas can be can be set

to smooth and called "none-of-the-above" rough regions (Figure 3.27).
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In this way, we are characterizing texture as aicroscopic snape
information, in high enouzh density configurations to be characterized
by statistical models rather than by specific 3raph1$a1 models. This
approach allows much more integration between shape processing and
texture processing. Each of our smootheﬁ'processes may be thought of as
a matcher for a given edge and edge connection histogram (Figure 3.23),
as described by Marr. Marr proposed that such histograa
characterizations of texturas could dbe sufficient to aimic human texture

discriaination.
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We claim that texture-like phenomenon can occur at any level of
shape representation, and therefore cannot be considered by one simple
formalisam (like spatial spectral analysis). Also, texturs processing
can best be understood as high density shape detail, too dense to
process explicitly. Therefore, texture can best be studied in the

context of shape extraction and representation.
3.13. Conclusions

We have described a systea which operates on single images to form
complete vertex-string-surface grapns. Surfaces ire agzregated prior to
contour processing by using the idea of homogeneity as the basis for
region segregation. Tnis method allows edge closure and the Zeneration

of some classes of subjective contours.

Tne contour-vertex processing described finds vertices before
contours, by examining local edge connsct conditions (reflexive
connections). Tnis method allows contours to be labeled without path
following (we use a pure scan line algoritha). Vertex reconstruction
and contour smoothing is performed via a tangent line based technique,
It 4is shown that detection of curvature discontinuities along contours

is analogous to the destection of edges in image spaces.

Textured ar=as are segregated from saooth arsas for optional
additional processing. This consists of a varlety of texture saoothing
procasses. Each of these, for a given class of textures, will produce
smoothed images from rough ones. The various saoothed images amay be
edge Jdetected and the results superimposed over prasviously detected
smooth rezion boundaries. In the same way color images can be
processed. The different color spectra are individually exaained for
edges with all detected edges being merged upon completion.
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Chapter 4

Half Chunks, Depth, and Motion Correlation

4.1, Introduction

Detection of scene chanze has been performed via bulk correlation
techniques which nominally reduce to picture subtraction or coavolution,
followed by sezmentation and characterization of difference areas. In
these approaches "difference” is examined very closely to the feature
level (i.e. difference in intensities, or intensity statistics). Jain,
Militzer, and Nagel [27] bhave used a method which coapares local
statistics to determine areas in scenes where change has occurred.
Potter [49] has used image differances for object segamentatlion. UGennery
and Burr have looked at bulk depth correlations, Gennery Lin outdoor
scene contexts and Burr for machine parts, In this approach patches of
one image are bulk correlated along a path of probable parralax in the
matching image (a convolution operation). Marr does depth computation
by matching symbolic entities from left image to right image, miniaizing
depth discontinuities [35). We have approached the problem of change
correlations in even a more symbolic manner. We look for siamllarities
in the structure of abstract forms produced froam stereoscopic motion
picture sequences. This is similar to some of Lhe modeling worxk of
Baker, Baunagart, and Burr, except we do not restrict the variety of

motion allowed for objects.
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We acquire our structural information in the form of V-S-S grapns,

one graph per input image. These graphs are re-encoded as nalf chunk
graphs and compared for depth and motion cues. The first variety of
graph is similar to that used by Underwood (62], however we encode more
complete topological and geometrical information. The second kind of
graph 1is entirely new. The graphs of several different images are
matched, binding atoms and links of common types together. In a similar
system, Dudani forms matches in vertex directed way [11]. Our matching
scheae tends to be guided by points of high curvature or significant
topological properties, but only because these have high discrimination
value (tend to fora unique matches).

This approach is desirable for several reasons. First, by matching
on half chunk features, coamputational effort can be reduced by selecting
pairs of atoms (or links) for assoclation, consistent with uniquely
matched “sead" atoms (links). Such a selection procedure assumes that
some Structural features (such as descriptive contour ocurvatures,
vertices, or types of intensity variations), are so descriptive that
they can only be matched to one corresponding feature from another
graph, and that this wmatching is correct. Tnis condition can be
guaranteed by deferring image matching to a level at which each
"component” Lo be matched is a significant part of a whole object.

Tne second advantage we zet from matching nalf chunks is Lhat the
various atom and link bindings wnich we obtain are easily interpreted in
teras of rigid body transforms of object parts and eventually whole
objects., Each aggregation of bindings around a given unique seed match
gives rise to transforams from one subgraph to another directly.

Finally, our techniques are esqually applicable to depth, motion,
and imasé registration correlations. Depth correlations primarily
1iffer from motion ones by the allowable transform taking one zraph (the
right one) to the other (the left one). Since the depth and motion
transforms are easier than the registration ones, we have included thenm
in our mateching procedures.




4,2. Graph Re-encoding (V;S-S to H-C)

In generating the single image graphs we found it useful to
segragate the various components by their geometrical types (i.e.
vertices, strings and regions). We found this convenient Dbecause each
of the different types naturally surfaced from our data during different
processing steps (small strings or edges first, regions next, long
strings and tentative vertices after regions, and finally true
vertices),

For the purposes of graph matching, we desired a uniform encoding
for our graphs, in which all the information encoded into the V-3-3
Zraphs could be used, but in more normalized form (Figure 4.1). To this
end we have invented the "half chunk" (H-C) graph. Each "half chunk"
represents a fragament of one half of a bounding contour for a region (or
a length along a string). Geometrically it represents a single change
in boundary curvatures (or in the case of a vertex, a tangent angle
discontinuity) at a point in space (3-space or 2-space), and a tangent
line at that point. T[lopologically, it encodes five connection types,
one across-region link (the R-link), two endpoint extension links (the
E-1inks), and two across-boundary links (the X-links, Figure 4.2). Ine
half chunk also carries a property list composed of features coaputed

from the region and string feature vector lists.
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V-S-3 Representation Of A Cube
Figure 4.1
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Half Chunks
Figure 4,2
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! Each half cnunk could carry a coampletely arbitrary floating point ;F
feature vector recording things like region color, intensity statistics, l;

and contour diffusion (degraes of bdlurring). However, for coamplex scenes
this would bde wmore than we require. We want to aake and record ;J

decisions about the various feature Jdimensions, rather than record

actual feature vectors. An array of decision features are computed froa lé
feature coamponents sncoded in V-3-5 atoas. The noises statistics for :
these decision features are approximated, as modified normal p
distributions, and are used to trisect the feature spaces (Figure U.3).

True (t) records a strong detection of a feature, "maybe" (?) a weaxk i
detection of the feature, and false (f) a sure non-detection. This
three state Jdecision property Ls recorded rather than an actual feature

vector coaponent.
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One-sided and Two-sided Decision Mcodels
Figure U.3 |-

Each H-C decision feature is related to some question we would like

ey

answered concerning the intrinsic properties [3] of the image generating

our graph strustures. We suamarize 2ach decision feature as follows:
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Feature 0-3; Intensity Chops

Intensity is scaled so that the mninimum intensity is 0 and the
maximus intensity is 1 (so as to be light level independent).
Feature 0 is the region lightness minus the 0.5 level (for the
region 1linked via the half chunk R-link). Is the regzion lighter
than average or darker than average? Feature 2-3 are successive
intensity chops (divides the half range, the quarter range, and the
eighth range).

Feature 4; Boundary Diffusion

Nominal Diffusion is 3 (3 pixels) due to the imaging system.
Is a specific boundary more diffused (i.e. 1likely to be a shadow)?

Feature 5; Lightest/Darkest

If the intensity is lower than 0.5, then this feature is the
region intensity minus the darxest region inteasity. If the
intensity is higher than 0.5, then it {is the 1lightest region
intensity minus the ragion intensity. Regions which are nominally
the lightest in a scene could be direct reflections of the 1light
source (or a highlight). Darkest regions could be unlit (or deep

shadows).
Feature 6; Intensity Step Size

This is the difference of intensities across a bouadary. Is
the boundary a light <> dark boundary or a dark -> light boundary?
Feature 7; Difference Of Boundari
Intensity to Region Center Intensity
This is obtained by subdbtracting the intensity along a boundary
from the average region intensity. Surfaces which roll away from

the observer get darker towards the boundary (less reflected light).
Flat surfaces, with abrupt junctions to other surfaces have rcughly

constant lightness.
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Feature 8; Variation Of Feature 5 Along A Boundary

This is the standard deviation of Feature 5 along the boundary.
Tnis detects a uniform lightness ratio across 3 surface-surface

junction. This can occur when a surface is painted on another.
Feature 9; Intensity Variation Along A Boundary

Tnis is the standard deviation from the mean iatensity along
the boundary. This feature Dbecomes large along rolling surface

boundaries.

Feature 10; Variation in Regzion Intensity

Tnis feature 1is the standard deviation of averagze region
lightness. If non-zero it implies the region is rolling and lit by

a light source.

Feature 11; Average Roughness

Tnis feature is the average edgedness for a reglon.
Feature 12; Boundary Real/Subjective Index

Tnis feature is the ratio of real edges per edge for a bounding
contour. It is a function of how broken the bounding contour was

prior to rezlon 3ggregation.

Feature 13; Depth Variation
*#After Depth Correlation Only¥®
Planes are locally fitted to all correlated naif chunks after a
depth binding operation. Any H-C with an anomalous depth r=lative
to its average plane is marked as having a depth variatioa.
Highlights can appear as either under or over the average surface

level. Occluded juanchions may also display anomalous depths.
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Feature 14; Aotion Variation
##After Motion Correlation Only##
Planes are locally fitted to mnotion correlated bhalf chunks.
H-C's with anomalous velocities are marked. Shadows, nighlignts,
and occluded boundaries can show this affect.

Feature 15; Region Eambedding Level

Tnis is not a decision feature lilke the rest. No statistical
decision is 1involved. The (t) value represents the largest ground
region. The (f) value represents the innermost level of embedding
(highlights tend to be at this level). And the (?) value marks all

intermediate region embedding levels.

Using the half chunk we can encode regions, strings, and vertices
in easy to traverse graph structures, which allow relatively easy graph
matching (Figure 4.4). The amodification or removal of relationships
during a matching sequence (such as the disassociation of two adjacent
regions), can b2 easily accomplisned by simply breaking links.
Insertion of new surfaces uncovered in the process of successive viewing
can be easily incorporated by "ripping" boundaries in half and linking

in the half chunks bounding the new uncovered surfaces (Figure 4.5).
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Figure 4.5
Certain types of "interesting" structurss become apparent in the
H-C grapns. Verticss turn out to be circuits along X-links. Regions
are formed by circuits along E-links (or by H-C's snaring the saza
R-1ink). A generalized M"interesting®™ thing is soamething which makes
chains and particularly closed chains.

4.3. Graph Matching (Depth and Motion Correlation)

Findinz matches Dbetweea non-identical graphs is in general a
difficult prodblem, certainly amuch more difficult than finding simple
iscmorphisas. If we do not expect to find many actual isomorphic

matches, then a natural way of ordering all possible non-isoxorphic
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natchings is via the idea of cost [S55]. We can invent some basic
atom-atom and link-link cost functions, and can define an overall match
cost as some function of the individual component (atom or 1link) costs
for all the bindings between the amatched grapns. If we have good
component. cost criteria, then good grapn mwmatches will also have low
cost., We, therefore, need Lo search the possible zraph binding space
(this space consists of all possible atom-atom, and link-link bindings
bet ween two input graphs), for ainimum gcost component binding

configurations.

If we chooss a metric (such as Euclidean distance) as the basic
element-element cost function, we may need to evaluate large numbers of
bindings to find the optimal whole Iraph binding. This computational
expense can be significantly reduced by typing the individual atoas and
links and allowing comparisons only between equivalent types. We can,
in many cases, do this typing witpoup any real loss in power. We would
not generally compare surfaces with vertices, atcms of aany type with
links, or contours considered very diffused with ones razor sharp.

This brings us to our particular match scheme. Taree coritical
ideas have been useful in patterning our algorithm. First, we constrain
any final matching of graphs to those in which only one-to-one atoa
(1ink) and one-to-none atom (link) matches occur. Second, we match
primarily by "covering", and only secondarily by atom (link) to atom
(link) metrical cost. And finally, matching processes are seeded at all
highly descriptive unique matching points, and allowed to compete with
each other in a parallel fashion for the remaining unbound atoms and
links. In good situations, most of the individual matching processes
eventually grow into gcontact with their neighbors, find compatibility
between the neighbors and themselves, and merge with the neighbors. In

this way large areas of a graph structure are matched in parallel.
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Generally, we are require six costs in a graph matching scheame:

A is an atoa from graph Ga
B is an atom from graph Gb
La {s a link froam Ga
Lb is a link from Gb

M.g.1. f(A,B) Cost for matching A and B
4.3.2. g(A) Cost for matching A to aull
4, .R. u(B) Cost for matching B to null
4,3.4, h{La,Ldb) Cost for matc1ing La to Lb
u, .g. K Lag Cost for matcaing La to null
4,3.6. v(Lb Cost for matching Lb to null

For the cost of an entire match, we select a cost (1-6) for each atom in
3a (for all A) and Gb (for all B). We sum the selected zosts. We wish
to find the matches where the cost is aminimal.

4.3.7. C = Zf(A;,8;) + Tg(A;) + Z ulB;)
+ T n(La;,Lb; ) « ZTk(La;) + Fv(Lb;)

In the most general atom natching directed scheae, we Auill
necessarily have to check every atom A (in graph Ga) against every atom
B (in graph Gb). And in the case wnere the costs, particularly the atom
~atch assoclated éosts (1-3), vary as function of things already
matched, even more coamparisons may be raquired. Tne 1link associated
costs (4-6) will be designed to grow primarily as a function of
misaatches which are a function of badly matched atoms, rather than
mismatches due to atoms matched to null. Tnis complicates the general
scheme by predicating the link match cost on the atoam matches. Finally,
if we have atoms of different types and links, it is not immediately
obvious how we should weight the components of graph aatching cost

associated with each.

We zet around most of these probleas by formulating a siample
"covering"-based costing scheme. If we tLype atoms, we need never
compare atoms of different type, They always are known to yleld
infinite cost. We may use the array of three state properties in the
nhalf chunk in the same manner as a type if we broaden the idea of "being
of equal types", to the idea of "being opotentially of equal types”,
That 1s, atom A covers atoam B if A could be B and B could dbe A. In our
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three state scheme this «ind of check is sasy. Tane t (trus) property
covers ? (maybe) and t, the f (false) property covers ? and f, aand the
? property covers 3ll (Figure U4.6), It may seem that simple three
state feature properties would be very weak, and indeed individually
they are. However, the three values are sufficient to answer, any
Boolean Qquestion posed coacerning a given grouping of featurs vectors,
and {f many such questions are asked, a powerful discriminator can be

formed from hLhe answers.

Example:
Covering Rules: ttefff
tPt = ¢ ?7¢£?2?
£EDE - teefff covers
ftDt =
add = dDDa tetéfff
2a®?7 =« a ?ecffe?

——————————————

tt?f?f does not cover

Co;gring su%es
gure 4.

For two half chunk atoms to be possible matches, they must "“cover"
each other, bs geometrically similar (i.e. close enough in tangent,
curvatures, and size), and 3ust be involved in eacoding the sane
topological relatioans (i.e. must have compatible link structure and de
either all vertex derived or contour derived). The aatching algoritha
uses one graph as a teamplate for the other. About each H-C in the
template a neighborhood (circular for motion matchinz, along the
direction of parallax for depth matching) is expanded and all H-C's from
the other graph falling in the nelghborhood are exaained for covering,
topological consisteancy and ametrical cost. Any H-C's with unique (or
no) matches ars amarked (bound to hne unique zateh, or marked as matching
null). Each unique dateh acts as a seed around which a loecal
interpretation 3ay grow (if no unique matches are zenerated the aatching

Wwith the lowest metrical cost is 2hosen as a seed, but this has actually
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never occurred sxcept while processing some test datasets - Figure U4.7).
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Neighborhood Eggansion, Seed Formation
gure U.7

After obinding up all unique matches, some prsviously aabiguous
matches (H-C's matching more than one in the other zraph), will now de
unambiguous., This happens because of link consistency. If atom A
matches uniquely atom B, A connects through an endpoint link to C, B
connects through an endpoint link to D, and C ambiguously matches D, E,
F, and G, then after bdbinding A and B, clearly we should bind C and D
(Figure 4.3). We can therefore 4imagine unique bindings causing new
unique bindings through any links. By a relaxation scheae, these
influences are propagated until the various seed centers grow Lo

collision.
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A Unique Inrluesging Agjgcent Noa-unique
gure U,

When two séeed centers c¢ollide, if they represent, autually
coasistent Dbdindings il.e. they both cause the template atoms at the
collision area to be bound to the same atoas in the other graph) seed
growth stops, and the adatching is locally finished. If tﬁe seeds
disagree about particular bindings, the interpretations with the lowest
metrical cost are adopted. Thus, one seed zay steal atoams and links
from another, and may ultimately obliterate the other. Because of our
covering-based method for sead selection, we generally get good seeds
evenly spread over the image graphs. Therefore very little competition
actually occurs between seeds, and rarely is a2 seed totally absorbed by
its neighoors.

Just as the neighbornoods expanded for motion matching differ from
those axpanded for dspth matching, the metrical cost functloas 4iffer
(Figure 4.9). For depth we allow small movement in the parallax for no
cost, but require close fit ia tangent, curvature and non-parallax

variation. For motion we allow small movements in X or Y, but coastrain

tangent (thouzh not as much as in the depth 2ase), and curvature.
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Depth and Motion Costs
Figure 4.9
For both cases, once a binding transform for one H-C is coaputed
(from a unique bindinz), this transfora is used for computing cost for

connected H-C's, It is assumed that objects are relatively rigid.
4.4, Interpreting Bindings (Transforms and Graph Merger)

After a completed matching sequence we have the two original graphs
(i.e. their atoms and liaks), and a set of atomic bdbindings (which imply
link ‘bindings - if A binds to B, A is linked to C, C binds to D, and B
is linked to D, then the link from A to C is bound to the link from B to
D - Figure 4,10). We must now use this binding information to fuse the
Lwo graphs, forming new graph elements associated with 3-space

coordinates vectors (in the case of depth matching), or velocity vectors

(in the case of motion matching).
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Figure 4.1

The actual coaputation of a depth or a velocity for single half
chunks, or clouds of half chunks in connected subgraphs is resally quite
straightforward matrix algebra (on potentially overspecified systeas).
We have chosea to simplify our depth computations by assuming that the
objects we see are relatively far from the <camera systea, ainimizing
perspective distortions. If this is true, Z (depth) becomes negatively
proportional to parallax.

P Cparadhx) = 1%70 = Yot
X = '(r:?U'
= . 5,“' /-,Cé/ D(fﬂ
d= I F Compitirion.
2= C(k-p) Chose k1€
dvrn'v, Calbratron

The main advantages of this approach to coaputing X, Y; Z are
simplicity, and the inherent isolation of parallax errors to only the 2
component.. X and Y measureaments are relatively accurate (good Lo one
pixel position), and P (parallax) measuraments are zood for coaputing
relative depth. However, in translating X, Y, P into absolute X, Y, 2

significant errors dua to P can occur. Ih is better to isolate these
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purely in the Z coordinate.

. For ootion transform computation we assume saall overall motions.
; i Therefore we ignore any overall scale changes. We compute three
i

different azotion transforms, oane assuming simple traaslation, one

assuaing translation and a rotation in the plane of the image only, and

one assuaing translation and 3 general rotation in 3-spacas. We select
the most complicated transform which is not singular (or near singular).
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As has been shown, computation of transforams of various «kinds is
easy following the gIraph maten. Wnat is actually auch harder is to
produce an new graph (3-dimeasional, or with moviag nalf chunks) which
is consisteat and preserves as much of the associations of the original
input graphs as possible. Producing this nerged graph is a heuristic
process, however some guiding orinciples are apparent.

If the basic signal data encoded in our graphs is good (i.e.
accurately raflects object structure), we expect nearly perfect matching
between individual scene graphs, where the underlying object structure
is common. In fact, we get this criterion as long as we correct for one
problea. We need to allow for bouadary expansion or contraction dusz to
slight changes in object viewing perspective. We deal with the problea
by allowing small, uanbound half chunks surrounded by larger, bound half

chunks to be absorbed into their bound neighbors (Figure #.11).

417

Boundary Contraction
Figure U.11

The basic strategy for graph merging is based on believing
atoam-atom bindings, and preaking in-graph links until each graph may be
unaabiguously overlayed over the other. Tnis baslcally neans that atoaxs
in one graph may have 1links (in one of the five possible terminals)
where atoms in the other do not, or corresponding atoms =may both ba
aissing corresponding 1links, bdut if bdoth have links they must be
compatible, Tnab is, if endpoint A links to B, and endpoint C links to
D, and A binds across graphs to C, then B must bind to D. If this is
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not true Lhen one or doth of the in-graph links (A %o B, or C to D) must
be Dbroken (Figure 4.12). The link which is broken is the one wnich can W
be axplained nost easily as an artifact of newly uacovered data, seen in

one image (an tnerafore its graphn), but not sean in the other (Figure

4.13).
legal Chom-adom bindlings
('/(674/ d%ant ot 25/;(1/3175
Lezal and Illeﬁal Bindings
' Figure 4,12
. - e — T RIRE VAR L ing e
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Links Broken Because of Inconsistency
Figure U4.1

Figure 4,14 shows threa images processed up to the basic VS-S
graph form (A. right t=0 image, left t=0 image, right tz1 image; B,
Edges; C. Image constructed from the region assignament data; D.
Tracing constructed from the basic V-S-S grapns). Figure 4.15 shows the
basic V-5-S form broken in an object sezment directed way (by segament
curvatures - Razer's method), converted to half chunks and correlated
for depth and moticn (bindings are marked in yellow). Figure 4,16 shows
the V-S5-5 form broken into saaller pieces, convericd to half chunks, and
correlated. Figure 4,17 shows the same recsults (in less detail) for an
interesting metal cutout (the 3-d model is rotated in three dimensions
for display). Figures 4.18 and 4.9 show other scenes processed for
object models (only one view and one time interval is displayed -
objects found will be displayed in the next chapter).




After Region Aggregation l

Generated From V-S-S Graphs

Processing Prior to Matching for Depth
and Motion
Figure 4.14
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Right V-S-§, t=0

Depth and Motion Bindings For Object Directed
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Depth Bindings (yellow)

Motion Bindings (yellow)

Segments
Figure 4.15
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Even More Objects and Clusters
Figure 4.19
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4.5, Conclusions

We described a method for correlating visual information at the
level of object structure, via a graph-based formalisam. This method is
very zood for wide angle depth correlations, wmotion corralations and
correlations where the transformation taking one graph to another is
ill-defined. This method is powerful when used in conjunction with
graphs made up of individually powerful (in terms of discrimination
power) atomic pleces of object structure., We have introduced such an
atoaic unit of structure for the world of man-made artifacts (or objects
primarily recognized by their shape), in the half chunk. We should note
that the idea of the half chunk does not depend on graph matching, nor
graph matching on the half chunk (we could have graph matched on the
V-S-3 graphs, but with more complexity due to the different atoaic
types, vertices-strings-surfaces).

Two major problems which arise when employing our graph oriented
approach, are the problem of getting good graphS, and the problea of
designing good atom-atom correlates. Tne latter problem we have
addressed by characterizing atom (H-C) properties as three state
decisions properties and using a "covering™ based comparison scheame.
The former problem is unsolved, and requires significant technical
effort. Our results in the area are promising enough to make us think

obtaining good zraphs is possible.




Chapter 5

Object Identification

5.1. Introduction

Object models have traditionally been represented as either
semantic net 1like graphs [651(62](59], or as object centered, rigid
body, surface descriptions. The semantic net approach is daeficient
because dimensional information needed for exact object reconstruction
is not incorporated. Tne surface description form has been used for 3-d
nidden 1line/surface graphics, and some recognition work. Baumgart's
system was primarily a graphics based system, which was applied to
object representation. Baker tracked contour information, but still
produced solid models which represent surface samples. Perkins stores
2-d models but also uses an object centered representation. Burer
represented objects as object centered 3-d segments. Object centered
models are good for display, however, are deficient for recognition
because each new viewing angle generates models which are parametrized
in different spaces. To wmateh models, first, correspondences aust
heuristically be established, and at least one model reparametrized (so
both are in a common coordinate system). This extra processing obscures
the matching process. It has been our conclusion that object
representation and subsequent recognition does not match either of the

two previously described modeling techaiques well.,
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Several works have suzgested modeling.techniques which 4instantiate
some critical object feature relations. The generalized cylinder
approach is like this. Many objects can be captured by specifying
relations along major axes [44]1(37]. Tne trouble is that every object
variety does not have these major symmetry axes.

Let us first list the requireaments of a model rapresentation scheme
and a method for employing such a scheame for recognition:

1) Tne modeling method should potentially be able to capture object
structure exactly.

2) Tne modeling method should be able to capture partial object
descriptions (in the sense of missing views).

3) The method should allow for representation of objects at varying
levels of exactness.

4) Models should bes built by the systea automatically. It should be
possible to enhance a model with new information to form a more

exact model.

5) Models of varying exactness and completeness should be
comparable.

6) Modeling should take into account redundancy of structural
components in real objects t.o form 12ore coampact
reprasentations.

T) It should be possible to recognize two very different objects as
different with less coaputational effort than to recognize two
similar objects as different.

8) Matehing should not require exact matches.

9) The primitive elements and relations used to encode objects
should explicitly encode elements and relations required in the
recognition process.
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10) Models should be comparable without reparametrization.

Tne semantic modeling approach satisfies (2) because complete
semantic graphs need not be encoded, (5) and (9) bscause presumably
ideal models would all contain critical relations and structure, and
(10) because critical relations and structure will not change from one
parametrization to another. The solid model approach satisfies (1)
because coamplete dimensional information is stored, (2) because
incomplete information is possible, (3) bscause all data can be stored
in an averaged form (a "defocused", low2r dimensional foram), (5) only if
an averaging process exists which can match models of differing size or
dimensioan (i.e. (5) is not satisfied passively - a computational
process is required), (9) if simple dimensional information is require
only (i.e. (9) is not satisfied if we want complex topological
relationships Lo be represented). Briefly, neither pure object centered
s0lid representation nor semantic representation has all the features we
desire for an object modeling scheme, although the 30lid modeling
approach seems to be batter. The generalized cylinder approach is
better than either except that not all objects are amenable to it (i.e.
for some objects 1like blocks major axis encoding does not instantiate

important relationships).

We encode objects in a novel scheme based on the "nalf chunk"
graphs produced by our depth-motion-labeling process (see Appeandix D for
a brief description of the labeling pass following depth-motion
correlation). Recall that the basic half chunk (H-C) is a small section
of object boundary curvature, which carries an array of properties
describing the nature of the surface-surface interface locally.
Dimensionally, a change in tangent angle and two leagths (lengths of the
lezs) are carried. In the original 2-d half chunk encoding, each H-C
also carries a tangent and the coordinates at the center and end of both
lezs. These parameters are removed (tangent aagle) or store in a
separated structure (coordinates of the last known position for each H-C
is stored in the XYZ atoms - these each index to a H-C atom, but are not

used in our recognition algoritham - the XYZ atoms are kept as data for
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low level feature trackars).

For simple objects (Figure 5.1), the object H-C graph does not
contain enough information to reconstrust a Jdimensional model of an
object, however, when the object complexity increases just a bit (Figure
5.2 and 5.3), complete information in the form of constraint relations
does exist. By constraint relations we mean that each d-C carries both
dimensional constraints (delta angle and lengths), and relational
constraints (X-link, E-link, and R-link bindings). On any reasonable
3-d object these constraints when taken in large enougzh subgroup sizes,
completely describe the solid nature of an object. We call this form of
representation "feature" centered 2as opposed to "object™ center, the
form commonly used for solid objeect representation. This foram of
modeling allows both 2-d (Figure 5.2), 3-d (Figure 5.3), and aixed
dimensioned cbjects to be represented. Also, because any surface or
boundary can be represented by a concatenation of half chunks, to any
degree of precision, the requirement of exact represeatation can be
achieved.
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A Half Chunk Graph With Redundant Reconstructions
Figure 5.1
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A 2-D Half Cnunk Graph 4ith A Single Reconstruction
Figure 5.2
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A 3-D dalf Cnunk Graph With A Single Reconstrustioa
Figure 5.3
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Qur method of encoding amultiple objects uses a dictionary of
universal half chunks which are referencad via tokens in all object H-C
graphs. An object model consists of a sequence of disconnected 2-d
and/or 3-d H-C graphs. An arbitrary number of individual objects are
allowed in an object library. Library objects are compared Lo input
objects (formed by the depth-motion-labeling correlator system) by
producing and comparing series of subgrapn histograams, beginning witn
histograms of basic H-C frequency. We find the histozram method allows
partial object matching, matching of wmodels composed at differing
precisions, and rapid removal of unlikely objects from the matching set
of objects. We believe that objects could actually by modeled by a
series of subgraph histograas rather than by tne original H-C graphs,
thereby reducing recognition from a series traversal of graphs, Lo one
of a series comparison of histograams. In this way, recognition of one
object out of a library of many objects can be made to be significantly

more computationally tractable.
5.2. A Common Basis for Object Graphs - Histograas

If we wisn to compare Iraphs we can either compute some graph
descriptor function (such as the nuamber of atoms) for each of several
graphs and compare the descriptor values, or we can traverse the graphs
in some way, comparing graph elements serially, accunulating a match
coefficient or cost (as done in depth and motion amatching). If we take
the traversal approach, we can either traverse the graphs in a breadth
first or a depth first oriented way. Assume that we have a library of J
object graphs each averaging m eleamental atoms in size. If we wish to
compare a new object encoded as a graph of n atoms to the 1library of
objects, using the breadth or depth oriented search approach we require
on the order of Jj*a*n compare operations. To use the dsscriptor
approach we need only J%®men operations or approximately 1/n times tne
traversal approaches. If the descriptors extracted from the obdject
graphs are invarianh we only require jsn operations (1/(m®n) times if )
dominates, likely for large object libraries - 1/(j*am) times if n
dominates, 1likely for small libraries of coaplex objects). Because we

Y
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have bsen interested in methods wnich could bes used with very large Jata
bases we have been athtracted to comparison by Jdescriptor aethods.
Particularly we want descriptors that are either invariant or easily
updated wnen new information appears (i.e. that do not rejuire
evaluation of all the information pertaining to a given object for each
acquisition of new data).

The type of graph descriptor chosen is based on critical subgraph
histograas. Because one descriptor may not be powerful enough to
separate all pairs of graphs, our method is based on comparison of
fanilies of descriptors, each accounting for higher order subgrapns. We
first match each primitive nalf chunk in new object graphs to the half
chunk component library. This library contains copies of all nalf
chunks used in any graph currently encoded in the object data base, Any
half chunks not having a match in the component library are entered.
All half chunks are thus replaced by H-C tokens. Tne first order
nistogram of an object graph has one slot for each H-C in the components
livbrary. Each slot is incremented for an occurrence of the
corresponding H-C token in the object graph.

To compute the second order histogram of an object graph we must
generate all subgraphs with two atoms (or H-C's), centered at each atoa.
We make a sorted 1list of the subgraphs (to achieve an J4invariant
ordering), collapse all identical entries into one, and use this as a
coaponent library. We wmay then compute a histogra:n using the
uncollapsed list of binary subgraphs and the new second order coaponents
list. Tnis operation may be performed repetitively for higher order
subgraphs, howaver, each level is computationally more expensive. For
arbitrary graphs coaputation bscomes expensive Juickly, however, because
the H-C graph primitive has limits on link fan-out, it exibits aore well
behaved growth, We still do not find it practical to expand extensively
beyond second or third ordar histograms: This corresponds to aatching
on the frequency of curvatures, pairs of curvatures, and trihedral
vertices. Beyond the order GLhree there is reason to believe that a

traversal base technique aight perform better computationally.
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5.3. distogram Comparison

Comparing object graphs has been reduced to comparing lists of
histograms. To compare 1lists of nistograns we need to address the
problem of comparing single histograas, one from a new object graph and
the other from a 1library of object histograazs (or extracted froa a

‘. library of object graphs). Tne simplest comparison method would be to
accumulate a least-squares like difference cost between the two

3 histograzs (Figure 5.4 - l4 +Co+ Cev). If this cost exceeds a limiting
cost, the histograms are different, otherwise they are the saae,
perturbed by measurement noise. This amethod is undesirable bacause any
new packet of views of an object is likely to be incomplete (unless we
explicitly intended the packet as a learning set and therefore included
sufficient information to build an adequate model).

We generally see only a few sides or discriminating features of an
object during a recognition set, this-being enough to separate a given
object from our space of all objects. Except during initial object
learning, we expect new object packets to be suhsats of an object
already encoded into our library. Therefore, matching error 1is only
accunulated on histogram differences where new object features are not

"covered" by old object library entries (Figure S.4 -0,").
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de will evaluate all three histogras matching costs C.,, Cou , and
Cev even though the first alone is used to determine objsct matching.
The other costs can be used heuristically in reducing search when
libraries of objects get quite large. As long as Cer is szaller than a
presel limiting value, any mismatch is assuzed to be due to inforaation
present in the new object histozram, not currently reflected in the
library generated histograms. This new information is added to the
library, refining the old object information, therefore allowing the
system Lo "learn™ about objects. On the other hand if the misamatch cost
is greater than the limit, a new object entry must be formed.

This points to a very important phenomenon of "learning by
similarity" systems. If the system is allowed to learn too fast (i.e.
the amismatch cost limit is too high), all new data sets will be
incorporated into one of a very few object models. If the systea is
constrained to learn very slowly (i.e. wmismatching errors aust be very
small for equivalence), new data sets tend to form entirely new objsct
models easily. We want practical systems to operate between these two
extremes. Imagine each object packet generating a point in an object
library space. For practical systems, we require a metric in this space
which gives a low value between points associated with the same object,
and significantly larger values between points associated with different
objects. As a corollary, we expect better perforaance the larger the
average distance between different object centers. Therefore, even if
we have a good metric, we need to start the systea with "good" (i.e.
far separated) seed object exaamples.

5.4, Strategies for Constraining Search

In principle, we can form a2 series of histograms froa any object
graph, then coapare thls series with similarly zenerated series from
other graphs to establish matching. Tnis can be done between any input
object graph and any graph in an object library. For large object data
bases this is ridiculous because of computational constraints. We have
programmed into our systea several different ways for artificially
constraining the object search (constraining the search without
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3 guaranteeing optimality). We may operate in new object mode, object ij
3 verification mode, and coanstant computational effort mode. For all -
operating modes first order histograms fur all objects in the library l

L

are precomputed and stored. Each new input object graph is processed
individually and the library file updated accordiagly.

b

For new object mode, the first order histozraam for the input graph
is computed. Tnis bhistogram is compared against all the precomputed

first order histograms. If it is dissimilar from all the others, a new

object entry (and associated nistogram) is formed. Thus an new object '
is "learned". If only one histogram from the 1library is siamilar, a [1
match is declared and the new object graph is concatenated to the graph

data stored for the matched object (matched histogram is updated ll
accordingly). If several histograms are similar, each is expanded to '
the second order, along with the one from the input object graph. Tne [J
matching of the second order histograms proceeds as did the first. ]
Expansion of higher order histograas continues until either .a unique !?
match is found or all potential matches are discarded (a new object
entry is composed). This strategy allows new objects to be entered and
old objects to be recognized. Computational load 1is roughly
proportional to k*n vwhere n is the number of objects in the library and
K i3 related to average object complexity. Most of the work is done L.
with the first order histograms, thus eliminating larze portions of the

search space after one level.

Ffor object verification mode, we disallow any new object entries. o
Again the first order histogram for the object to be recognized is ii
computed and compared to all first order histograas in the library. Ir
we allow matching of no objects (i.e. this object is allowed to mateh
none), the matching proceeds as in the new object mode case, except that
no new objects are entered into the library whea all matches fail. If

we insist on a match, and we get to a level of coaparisons (first order

mateh (using c;v as the index of cost) as a correct maten. Tnis

or unigher) wvhere no possible matches occur, we select the lowest cost '!
basically forces the selection of an object. This matching mode will [}
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have better perforamance in error prone environments, at the expense of
disallowing new object aodel building. Computationally, this asthod of
operation is equivalent to the new object mode.

In the constant computational effort mode matching, we constraint
object space searching artificially by examining matching costs (using
cu and C’.,,,). The heuristic used does not guarantee optimality, but
generally yields good results for large object libraries. We expand the
first order histograa for the input object graph, and compare to the
precomputed histograas. We eliminate all histograms not considered
similar. We treat the single and null match as previously. However, in
the case of the multiple match we disallow all but the a best matches (m
is a specified constant, and best to worst is ranked using the C’nn cost
- similarity 1is still based on thresholding the sz cost). If after
selection, multiple matches still abound, we desceand to second order
histogram based comparisons. If these yield aultiple matches, we
examine the third order matches. The parameter m is roughly equivalent
to the depth of our most intensive search in histogram orders. In this
way we can artificially 1limit computation during object matching.
Intuitively, it seems reasonable that recognition can be accomplished
for most machine parts with limiting search to three histogram orders -
curvatures, paired curvatures, and trihedral vertices.

Figures 5.5 and 5.6 show the objects recognized and entered in our
test object libraries generated by runs on the data set shown in figuras
4,18-4,19, Note that while some data will be missing for specific
instances of an object, the data that is present has an ianvariant

relationship to model data (with some measureament error).
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5.5. Using Histograms as the Models

In the current implementation of the object modsling systeam, we
have a basic half chunk coamponent library ordered by intrinsic half
chuak valus (sorted on all H-C properties, inducing an invariaant order).
Bach H-C is given a token value at the time of entry into the coamponent
library. All H<C graphs for objects are re-encoded using this token
value in 1lieu of actual half chunks. Prior to object recognition, the
first order histozrams for each object model are computed from these H-C
graphs, stored in the object 1library. As required, higher order
histograans are computed during object matching sequences. Because we
have found that generally only limited levels of histogram orders really
need to be traversed for nost sets of objects, it seems quite reasonable
to eliminate actual graph storage in the future.

Modeling objects as histograas, or as paraasters wnich characterize
(such as r( and 6 ) histograms is juite appealing, because it allows
us to unify shape and texture recognition techniques. We have pointed
out elsewnere (Chapter 3) that texture is best modeled as an overdose of
shape information. Using histograns of edze and edge connector
densities and directions Marr has described many elemental textures.
Using our nistogran techniques we can describe object forms. While
histogram segamentation across whole images many be questionable, most
elemental difference-based edge detection scheamss can be posed as local

histograa characterization and aatching.

The shape histograms herein described amay easily be increasntally
formed (l.e. updated to reflect new information), if we fully expand
the components library to all pcssible H-C primitives. This set of low
level primitives then becomes our basic object alphabat. Individual
objects become statistical "words" composed of these 1letters without
order (first order nistograms), with binary ordering constraints (second
order), etc., We really never need to encode graphs to encode object

structure.
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5.5. Conclusion

We have described a modsling system which is "feature"” centered
rather than "objJect" centered. Tnis aethod has the good features of
semantic net models and dimensional models coambined. We have discussed
several modsl matching methods which allow for automatic aodel building
and model verification.

Tne method we propose is based on objects modeled 3s 2-d and 3-d
half chunk graphs. These graphs are relational networks of elemantal
curvature samples. The basic model is free of scale, coordinate systea,
or rotation dependencies (howaver, XYZ atom information may be
incorporated to bind the half chunks to a specific three Jdimensional

space). This allows model comparisons without any reparazetrization.

To speed the recognition process, allow for matches on partial
data, and organize search, we have describe a histogram-based object

graph amatching scheme, This method may be extrapolated to actual object

modeling by histograms.
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Contributions And Future Work

6.1. Contributions

Tnis work first and foremost is an attempt at constructing a
complete visual understanding system: from initial measurement and

segmentation to object learning and recognition.

We have contributed two new edge detection schemes (Chapter 2), a

new region-based edge reinforcement process (Chapter 3), and a new

algoritha for boundary and vertex codification (Chapter 3).

The most significant contribution is the half chunk, half chunk
graph, and the histograaz-based graph compariscn method (for objest
library amaintainance). The H-C graph is significant because it points
the towards "feature" centered object models instead of "objecst"
centered models (Chapter U4). Tne histozran-based modeling systea is
significant (Chapter 5) because it point towards a method of processing
visual data that could unify object recoznition, texture discrimination,
edge detection, and region aggregation (all as histograa

characterization processes).

A smootning method (Appendix B), a method for threshold datection
(Appendix C), and a feature based labeling scheme (Appendix D), have

also been Jeveloped.
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Figures 6.1 and 6.2 show a block diagram of our system operating in
non-textured black and white environments and in colored-textured

environzents.
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5.2 Future dorg

The greatest speed and performance improveaments will come from work
on the first few processing steps, 1i.e. edge measurements and
region-based prozessing. Tanese both now work with 60000 pixels per
image and this resolution will grow. We now require approximately 22
minutes per frame for these steps and only S ainutes per frame for all
our graph-based 1anipulations (this is even mora significant if you
consider that the 20 minute phases are hand coded to execute as fast as
possible, whereas the 5 ainute phases are implemented quite
inefficiently). By Lhe time we have reduce our processing to edges, we
have nominally 2000 points. After V-3-3 formation hundreds of things
remain. By the time of object identification we very rarely have dore
than 10 individual structures left to procaess.

Reliability is still limited most by how well initial significant
differences can be measured. Cameras need better dynamic range, spatial
resolution, and distortion characteristics (spatial and intensity

ranges).

We see no 00d reason wny edge information cannot be diractly
encoded into half chuak form without the intermediate stage of the V-5«3
graph. We also see no reason why more relaxation-dbiased processing could
not Dbe incorporated into a single prozram, allowing richer interaction
between the high and low levels of the system (particularly, with
respect to depth, evidence indicates that humans can use depth
information at a lower level for segmentation aids prior to object

formation).

We feel that distributed computing architectures would greatly
improve the real time performance especilally at the low end where help
is critical. Tanere should never be any reason for a general purpose
serial machine to evaluate a function over every pixel site,

We feal this effort towards a bottoam-up based system {s a aixed
success. We have extensively tested our methods for edge and reglon

detection and formation. [nese are gquite successful. dur texture

N Rt
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processing has been done for only a few examples and runs too slowly for
extensive testing. It currently «nows about edge densities with and
without directions. The graph matching methods for depth and motion

works well for objects having soame sharp cursvature discontinuities but
not 30 well for thiangs with very regular structure, like spheres. For g
these, a "half chunk"-like structure for expressing centers of object
symamatry are a possible solution. We would propose a systeam which uses
both boundary generated half chunks and symmetry axis generated half
chunks. Also things with no regular Jdimensional structure, like tress,
cannot be modeled. Inis problem would probably best be solved by
incorporating a half chunk based systea within a more global semantic
net based system (possibly coupled to a natural language systea). It
has been difficult to process enough data for more than about eight
objects, so the modeling system has not besen extensively tested. we,
therefore, can only speculate on performance with very large object data

bases.
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Appendix A

Edze Detectors

A.1. Huecxel Edge Detector

This edge detector is a direct implementation in BLISS-10 of the
algorithm in (23] Appendix A, with fixes indicated in [2U4]. Tne
operator is designed to work on a digitized disk of radius 4.5 (dfamneter
of 9 =cells). It allows detection of steps, dark stripes, and/or light
stripes. In these experiments, we have restricted the algoritha to
steps.

The operator attempts to explain all activity in a disk in terms of
the superposition of a set of orthogonal functions. The intensity
function is expressed as a series expansion in terms of the orthonormal
set. A least squares criterion between the actual intensity fuaction
and the orthonormal expansion is used to compute, approximately, the
coefficients for each teram. From this the edge type, position, and
direction is computed. For complete details the reader is referred to
the literature.

A.2. Psuedo-Hueckel Detector

Tais operator is based in the same sort of mathematics as is the

original Hueokel operator. Tne intensity variation in a1 square

neighborhood of 9x3 is expressed as a superposition of orthonormal
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functions. Ia [(43], it is shown that for detecting the direction (o)
of any step in a wWwindow the functions of Figure A.1 are sufficient.

A.2.1. ,Z§ 9eaq) mali, §)

— — ='Qu(l-%v)
; Z 9(i4) M, (i,4)

-‘::117n47¢ Function

+1
", (i, § (f
Lf) - | M)

-[- Mask Functions

Orthonormal Set For Direction Coaputation
Figure A.1

OQur simple refinement to the procedure in [43], to allow detection
in non-binary pictures, consists of coamputing the ainimum and the
aaxioum in the window, while coaputing Lhe components of the gradient.
Was then select a threshold of T=(MAX-MIN)/2+MIN. [43] suggests that
with suzh a threshold T, we can coapute the edge line (i.e. the edge
position), given the direction (%) and the number of cells greater
than, or less than the thresnhold. Wnile this is true, we fouad that it
was actually easier to lmplement the posiltion computation by fitting the

least squiares line,

na22, ye Z1774 4 4 x4 1
x» ¥ x» -x

a—

>
N
[V V]
*
.
»
[ ]
|
(& J
<
-‘.
o
[ 4
| B
'
x| ~<)
(X <

using the points where the Iintensity flips froa one side of tnhe
threshold to the other side of the thresnold.
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Tnis modified operator is significantly faster than Hueckel's and
sesns equally sensitive., E£ach pixel in the square area is accessed two
times. Once to coapute MIN, ™MAX, and gradient components. Then a
second time to acquire threshold crossover points, therefore coamplete

the edge line information.
A.3. Linear Differance Detector

Tnis operator was used by [7] in nis edge Jdetection apparatus, aand
was for us 3 jumping off point in our edge detection experiments. Our
difference-based system is really aa array of 1linear difference
detectors with a better peak selection algoritha.

A six cell strip (vertical or norizontal) is used to compute a
difference (three positive, three negative). This difference 1is
compared to its nearest neighbors (Burr used the neighbors on both
sides, we use several neighbors on each side). If it is 3 relative
ainimun or maximum, an edge is marxed in its position. Burr went one
step further. He examined the difference in the orthogonal direction to
compute 1n angle for the edge (as in the psuedo-Huezkel operator). We
siaply mark vertical or horizontal edges.

A.4, Rosenfeld Non-Linear Edge Detector

This is a direct implementation of the adge detection method
described in [52) and [53]. Inis system computes an array of averaged
pictures, four in all for our lamplementation. The block sizes used in
the averaging operations are 2x2, Ux4, 8x8, and 16x16. Rosenfeld also
suggested 1x! and 32x32, however we found these to be unnecessary (1ix1
is smaller than the quickest step transition possible from our vidicon
system, 32x32 is larger than required to average any noise pattern in
our tests).

Tnen differences are formed in the vertical and  horizontal
directions (Rosenfeld suggests diagonals, bobut for computational
efficiency sake, we use only two directions). Al each averaged size, we

used mnaxima suppression Lo remove (set to zero) all points that sre not

A e,
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maxima or minima within one averaged block area. Additionally, the

differences not suppressed aust be greater than a coanfidence T.

We now examine the differences with respect to those in other
averaged sizes. de select the difference for which then next saaller
size does anot give a significantly higher absolute difference. If E£(i)
is a difference for the averaged size 1L x i and E(i/2) is the maximua
difference for the next level smaller (the maximum non-suppressed
difference in the area covered by the i x i sized neighborhood at the
(1/72) x (i/2) sized level), then "significantly higher" means:

A4,1, EQ) K aE(i/Z)(;.Sa"Z)Eéi/SZ"Z)) <

vee € n)E(i/(2%%n))
but, E(1/(2%*n)) > aE(i/(2"*(n+1)))
where, a_3/4

An edge i3 marxed in the position of this seslected difference. Tne
(2%%n) term will never exceed 8 (n=3), in our implementation. At n=3,
the selection process automatically selects the difference {i.e.
(i/7(2%*#%(n+1))) is never evaluated when n=3).

For further details we refer the reader to [52] and (53].
A.5. Yakimovsky E£dge Detector

Wda have adopted the edge strength function proposed by (66], but
not the region growinzg algorithm. This 1is done because we wish to
exanine edge Jdetection techniques, not region-based processing.
(Althouzn, the region-based techniques nay be interesting in coamparison
to those described in Chapter 3. There are similarities between our
method of expanding edge neighborhoods for string and vertex detection
and the growing rules used by Yakimovsky. By not being constrained to

be one pass, our system is capable of doing better in some cases.)

e have simply coupled Yakimovsky's edge strength function to a
non-maxima suppressing edge detection scheme. Tne strength function is
given in Chapter 2, for reference to the more standard expressions for

varlance and :mean coamparisons.
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e suppression algoritha used is like the one previously descrided
for the linear difference Jdetector. de scan the operator neighborroods
(four suggested in [65] - ses figure A.2) horizontally and vertically,
sarxing edges at each point where the output {s maximun within one
operator aeighbornood area. Tne only complication is that ws select our
result froa the operator naving the largest strength, and suppress the
others within the same area. YakimovsKy seeas to be suggesting GLnat
several differeantly shaped neighborhoods might allow object shapes to de
followad more affectively, considering that his techaigue requires a
relatively large nuader of saaples (to compute the variance accurately
enough). In fact, from 3 purely statistical point of view it can be

argued that even larger neighdornood sizes aight be Jdesirabdle.
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Yakimovscy's £4ze Detection Neighbornhoods
For Horizontal Edges
Figure A.2
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Appendix B

Image Smoothing and Enhancament

B.1. 1Image Averaging

The basic images taken from the C.3.L. silicon vidicon imaging
system are 252x238 six bit pixels each, plus or ainus one level. For
low contrast images, only 64 levels is not adequate (especially wnen
performing gradient related opesrations). W2 have remedied this problea
by averaging eight 252x233x6 bit images to form a 252x238x3 bit one.
When the vidicon signal is near a Juantization level, samall noise
variations can cause plus or aminus one level digitization errors (the
analog signal in our system can be modeled by the sum of the "ideal"
signal + N{0.0,70.5} - see Figure B.1!). If w2 sum several images
together, we can effectively zet new levels "between" the old ones in
single images, thus a finer quantization of the vidicon signal. This
only works because there is additive noise in the vidicon image signal.
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VIDED SAMPLED 8- FRAME
SIGNAL 6-8/7s INTEGRATION
(9-8/T)

Vidicon Signals, Quantizations, aad Averages
Figure B.1

B.2. Image Smoothing

We can further improve image quality by srmoothing. Tnis generally
consists of replacing every pixel by the average of all the pixels in a
given neighborhood. While this does improve "noise"™ variations (by
replacing a randoam variable with M and 14 by a new random varlable with

M and 7%; ), it also blurs genuine signal variations.

To get around this problea, wa designed a1 noa-linear saoother based

on the maximum likelihood decision between: it
: l‘g*'l
0 M A Y I 2 . O '----~
H,: ‘17 R ZIR T € N(o§) " ' r‘__- i !
L 4 N (5,6 NI ik B ot B
H, 0 teg = lxt) g l’_ ] i '
o !
Estimated Noise :...:’.1;
Distribution
0
1xy is set to:
w (+1,0) Crory * w (-], 0) yery w(o,w)z,,” * w[a/—/),",., + Ley ﬂ

wWl+,0)+wl-1,00+ wlo,+)) + W(0,-1) + ]

Where:
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Tnis decision is evaluated about each pixel for each of its
adjacent neighbors, iteratively for several whole picture cycles. de
nave experimented witn severa. methods for cutting off the iteration
process. [he first, and simplest, is ¢to iterate a fixed numoer of
times. For our typical 1images we have found 5 iterationas to bYe
adequate. Second, we nave allowad iterations to zontinue until the
overall 0 of tae image fails to ©become smaller, indicating signal
dsgradation. This method, for typical images, runs betwaen 3 and 6
cycles before stopping. Tne last method used stops cycling when 6 '
for g(t)-g(t-1), fails to decrease. This method is like the second oae,
except that it is less sensitive (in terms of number of iterations) to
randoz changes in image content (i.e. various genuine signal related
differences). Figures B.2-B.5 show slices of a six bit image, a nine
bit. image, and a nine bit image after smoothing has been performed (5

and 10 cycles).

g(t-1)
g(t)

image at iteration t-1

image at iteration t
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Appendix C

Selection of Thresholds in a Segmentation Process

Segmentation processes generally consist of clustering wmany
measureaents from similar objects together, or conversely separating a
few highly Jdissimilar measureaents from a large sea of similar ones. If
we have a model for expected measurement error, we can form a function
waich relates any particular measurement value to the probability that
that measurement represents 2 noise variation or a signal based
variation. We then can select an acceptable threshold for separating
"discontinucus” phenoaenon from "cont inuous" phenoaenon. (In
discretized spaces each measurement may be considered discontinuous from
the next. However, if a plecewise continuous function was saapled to
form the discrete function, this definition of coatinuity is not useful.
Wa wisn a definition of discontinuity suzh that points at
discontinuities 1in the underlying continuous space fuaction also

represent discoantinuous points in the sampled function.)

First we need to define 1 difference variabdle. For edge
detection/region growing this 1is simply the 4intensity difference
computed from adjacent averaged intensity neighoorhoods (the most
primitive being single pixels). Possibly, different. neighborhood
orientations (suzh as vertical vs. horizontal differences) should be
considered drawn from different populations (therefore handled as

boed | b e b
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ssparate sets of data). For significant angle difference detection
(corner detection), angle differences can be used. For depth
correlation errors, depth differences from adjacent coanect (in one or
the otner stereo image pairs) depth associated aneighborhoods define a
difference variable. A good difference variable is a zero mean randoa

variable, for all measurements taken from a similar set of data.

If we assuzne many more similar readings (i.e. many more difference
sites which are associated with no edge, than difference sites which are
locations of edges), than dissimilar readings we may estimate the noise
distribution functions using an one of several standard techniques (by
assuaing all the readinzs represent noise variation - the number of
noise readings must be >> than the number of signal readings). For
simple discrete cases we can use either a binomial model (good because
there may be a position in the distribution where no noise will be
detected as signal) or a normal model (good because it can be
characterized easily by two parameters the mean M and the variaace

[ ). For more complex distribution types we may use a Moate Carlo
method.

Armed with a typical noise distribution we may select a threshold
which labels 3 particular measuremant as a noise point with a known
error probability p (Figure C.1). We need not threshold negative
differences at the sam2 significance level as positive ones, but we
generally would expect to do so. This method for threshold selection is
related to several goodness-of-fit methods commonly described in the
literature (30].
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Appendix D

Region and Vertex Labesl Sets

D.1. Labeling Algoritham

As a final object sezmentation -technique, ws resoét. to a
"Waltz-like" labeling scheme for assigning types to regions and half
chunks. We are not interested in the intimate descriptions of line type
that Waltz himself obtained, but rather want to separate the half chunks
into three major types. These are lighting derived, true object
derived, and occlusion derived. The first and the third types are
grouped and marked so as to be ignored during the object recogaition
phase of processing. Tne meaning of lighting derived types 1is
self-evident (we mean highlight or shadow related half chunks, when the
half chunk does not also coincide with an objest related boundary).
Occlusion derived types (UNLINKED- types) are generated at what Waltz
called "occluded" or "occluding" boundaries (Figure D.1). Regions or
surfaces are labeled as shadow, highlight, ground, or object. Ground
represents the largest background region (or group of regions).
Generally this is the tabletop, or bacxdrop. 1
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We bezin our laveling algoritham on a3 H-C graph naving each H-C
assigned every possible labsl type, Iteratively we apply vertex-based

constraints, then surface based constraints. All half chunks connect in
X-link rings are processed jointly as vertices. All half chuaks connect

via R-links (alternatively, via E-link rings) ars procassed jointly as

surfaces.

Each vertex label type applicable to a leg of a H-C is an "on" bit
in the H-C typs field for that leg (initially-all are on). wWs scan
through our vertex list for all matcohing vertices (same geometrical
class, degree, and having coampatible labelings), and accumulate the
logical OR of these labelings (equivalent to <cons'ing a 1list of all
possible vertex matches). Possible labelings are ANDed with the initial
H-C labelings. In the first iteration, this operation eliminates
labalings incompatible with certain boundary feature properties.

Each E£-link (connection aloag the boundary) is examined for
adjacent H-C type compatibility.A This causes the labelings on either
side of the linkage to be the logical AND of the labelings prior to this
processing, I'nis operation is equivalent to computing the intersection

’ of the the two label sets.

After the vertex-based processing (processing equivalent to W#altz's
"filtering" algoritham), surface-based constraints are applied. Each

-

surface aggregation is labeled as shadow, highlight, ground, or object, |
by matching indicator label types on all the H-C's sncoding the surface.
Then the labals wnich are incompatible with the region type are removed

from sach H-C,

Tnese operatioas continue until a specified number of {terations
are contluded, or untll steady state is reached (generally tLhe later).
[nis labeling scheme is unique for threes reasons. First, it is based on
half chunks which are themselves unique. Second, it incorporates region
constralnks as well as boundary coanstraints., Filnally, initial labelings
are assigned and constrained by directly measured feakure properties in
ajddition to semantic types (the regzion and bouadary labelings). In soxe

s
L e ; — -
g el i
i ot i ; . : it i : ;
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sense the vertex geomehrical type could be considersd as one ~f these

measured feature propertias (convex, concave, straight).
D.2. Nomenclaturs

Boundary Sezment (H-C Legs) Mnemonics:

LK Linked

Jp Unlinkede+

UM Jnlinkad-

HP Pure Highlighte

HM Pure Highlight-

Se Pure Shadow+

Sd Pure Shadod-

3 Unlinked-, Ground

U3 Unlinked-, Shadowe+

UH Unlinkeds, Highlighte+
Md Unlinked-, Hignlighte+
M3 Jnlinkedes, Shadowe+

L3S Linked, Shadowe

LH Linked, Highlighte

Feature Property Mnemonics:

DIFF Boundary Diffusion
LGTA Absolute Lightness
LGIR Relative Lizghtness
TANG Tangency Difference
RAT RatiIo Variance

VARY Side Variance

REFL Reflective Variance
TaX Roughness

REAL Real/Subjective Index
DEEP Dep-.h Variance

MOVE Mot ion Variance

EMBD fegion Emdbeddedness Index

Feature Property State Suffix:

¢ Sat to FALSE (no variation, not diffused,
lightest, light>darx, most eabedded)
& Sat to MAYBE (not deterainable,

object level emdbeddedness)
$ Set not-applicable-property

<none> 3et TRUZ (variation, diffused, not 1i§htest,
dark>light, ground level embedding)

Half Chunk Angle Properties:

¢ Qoncavo% (> 130 deg.)

v Convex (< 180 4 g.?

rA Zero, Straight ?: 30 dez.)
? “y V. or 2

Region Label Format:

( Indicator Labesl Concatenation ,
Compatibility Labei Conzatenation ) {coamnents])

AT SO N
CRED R 0T iy
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Vertex Label Format:

( ( H=C List 0 ) ( H-C List 7 ) ... ( H-C List n) ) [comments)
H-C List Foramat:

( H-C Angle Property , ( Lez List 0 ) , ( Lez List 1) )
Lez List Format:

( Feature Propesrty Concatenation ,
Bouandary Segment labels Concatenation )

*2Concatenations are anemonics and suffixes separated b{ '+!' (OR)
or '-'" (NOT(AND) - legal in label concatenations oaly

D.3. Example Label Definition File

(INITIAL REGIONS - 2-JAN-79]
LKogP LK+UP+UM+SM+HM) EgBJ?CT

GR,GA Rouuoj
HP+UH+LH,LH+HP+UH+MH; PURE HIGHLIGHT]
S§+MS+LS,MS+US+SP+LS PURE SHADOW]

[INITIAL VERTICES - 2-JAN-79]
(2-DEG]

( (?,(DEEP#+MOVE#+DIFF #+EMBD#,LK) gozsp#+mova#+olss#+smant LX))
{2, (DEEP#+MOVE#+DIFF #+2MBD#, LR}, (DEEP#+MOVE#+DIFF#+EMBDF, LK) ) )

( (C,(DEEP#+¥OVE#+DIF?#+EMBD##LGIR#,LK),(DEEP#+MOVE#+DIFF#+EMBD#¢

L K
(V, (DEEP#+MOVE#+DIFF #+EMBD#+LGTA#+LGTR,LH) , (DEEP#+MOVE #+DIFF #+EMBDE+
LGTA#+LGTIR,LH)) )

( (Z,(DEERgE§OEE#+DIFF#+EMBD#+LGTR#,LK).(DEEP#+M0V€#+DIFF#+EMBD#+

(Z,(DEEB#‘MOVED+DIFF#+EMBD#+LGIA#+LGTR,LH),(DESP#+MOVB#+DIFF#+EMBD#¢
LGTA#+LGIR,LH)) )

( (7,(DEESP#+MOVE#+DIFF #+2MBD#,LS ), (DSEP#+MOVE #+DIFF#+EMBDS,LS))
{7, (DEEP#+MOVE#+DIFF #+EMBDOF, LK) , (DEEP#+MOVE#+DIFF#+EMBDF, LK)) )

( (2 gnaapo+novs¢+oxsso+enao# LS&SSDEEPO+MOV€#+DIFF#+EMBD# Ls))
{2, (DSEP#+MOVE#+DIFF #+EMBD#, L3}, (DEEP#+MOVE #+DIFF #+2BDF,L5)) )

( (z,(Dsggfxgogggﬁnisfo+smso#+LorAc+LGra,LH),(DEEP:+M0VE¢*DIFF:+EMBDD+
+
(Z.(EgEP:+E§¥§33DIFF#+EMBD!+LGIRl,LS).(DSEP#+M0V€#+DIFF#+EMBD#+
?

J
( (V,(DZEP#+MOVE#+DIFF #+EMBD#+LGTA#+LGIR,LH), (DESP#+MOVE #+DIFF #+EMBD#+
LGTA#+LGIR,LH))

(C,(DEBP#+MOVE§+DIFF#+BMBD#+LGIR#.LS),(DEEP#+MOVE#+DIFF#¢EMBD#+
LGTR#,LS)) )

( (?,(DEEP#+MOVE#+DIFF#+EMBD#,UP ), (DSEP#+MOVE #+DIFF #+S4BD#,UP))
3, (24BD,GR ), (EMBD s )
( 2 56&€P0+MOVE*+DIFF*+EM D#, MS), (DSEP#+MOVE #+DIFF #+EMBDE,MS))
{?,(E43D,GR), (E¥8D,3R)) )
(z,(anggxaovap.DrsFa,snsoa’ucrnt¢ucra,ua),(Dsspo+aovs#*oxss¢+anao:.
¥}

+ GrR,Ud;)
(Z,(EMBD+LGTR#,GR), (EMBD+LSTR#,GR)) )
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(v, (D“Eg§+MOVE¥§DaFF##uﬂBD#+LGTA#+LGrR JUH), (DEEP#+MOVES+DIFF#+EMBDA+
+|

(C, (EMBD+LGTR#,GR), (EMBD+LGTR#,GR)) )

(DSEP#+MOVE#+DIFF #+E4BD#,UP ), (DESP#+MOVEF+DIFF #+E4BD#,UP))
l’ (DIFF #+2MBD#, Ud), (DIFP#+EMBD# u4)) )

(2, (DUEPgangc#*DIFP#+&ABD#+L;YRJ ,UP), (DEEP#+MOVE#+DIFF 3+2MBDE+
(?, (DIFF#+UMBD#+LurA#+LurR MH), (DIFF#+S4BD#+LITA#+LITIR,Md)) )

(DEEP#+MOVE #+DIFF #+5BD# ,MS) (DzEP#+40V=0+DIFF#+EMBD'.A>))
(7 (DIFF#+SMBD#,U3) , (DIFF¥+24ABD#,US)

(DZEP #+MOVE #+DIFF $+£8D# UP ) EDQBP#+MOVE#¢DIFFI+EMBD# ,UP))
{2, (DIFF#+EMBD#,US ), (DIFF3+EM8D#,US))

(? sDEZPO+MOVn#+DIFFl¢ IM3D#,MS ) gg P#fMOVn#+DIFF#+aABDi MS))
(DIFF#+2M8D#, M), (DIFF b+EMR

(2, (DaEgg#;OV§§;DIFF#+5MBDC¢LGTR# WMS), (D EEP#+MOVE #+DIFF #+EMBD#+
(2, (DIFF#+EMBD#+LGTA#+LGTR M), (DIFF #+EMBD#+LGTA#+LGTR,MH)) )

(Z,(DEEP#+MOVE#+DIFF #+EMBD#+LGTA#+LITAR, Ut ), (DSEP#+MOVE#+DIFF #+518D#+
LGTA#+LGTR,UH))
(z, (DIFF#+LMBD#+LuIR# Ud), (DIFF #+2MBD#+LGTR#,UM)) )

(V,(DEEP#+MOVE #+DIFF #+EMBD#+LGTA#+LGTR,UH) , (DIEP#+MOVE R+ DIFF #+EMBDE+
- LGTA#+LGTIR,UH))
(c, (DIrF#+uMBD#+LGIR# UM) , (DIFF #+EMBD#+LGTR#,UM)) )

(Z,(DcEggxg?gggyblrF#+5MBD#+LuTA#,UH),(DEEP#+MOV&#¢DIFF#+EMBD#+
(Z, (DIFF#+EMBD#+LGTA# ,MH) ,(DIFF #+EMBD#+LGTA# ,MH)) )

(V,(DSESFK¥?¥5§;DIFF#+EMBD#+LGTA#,UH),(DEEP#+MOVB#+DIFF#*EMBDO+
(C, (DIFF #+EMBD#+LGTA#,MH), (DIFF #+EMBD#+LGTA#,MH)) )

(Z,(DZEP#+MOVE #+DIFF #4+EMBD#+LGTA#+LGTR,Ud), (DEEP#+MOVE#+DIFF #+EMBD#+
LGTA#+L3TR,UH))
(z, (DIFF#+~ABD§+LGTR# US),(DIFF#+EMBD#+LGIR#,U3)) )

(V,(DEEP#+MOVE#+DIFF #+EMBD#+LITA#+LGTR, Ut ), (DEEP#+MOVE#+DIFF #+EMBD#+

LGTA#+LGTR,UH))
(c, (DIFF#*EMBD##LGIR# US),(DIFF#+E4BD#+LGTRE,U3)) )

(EMBD GR) (E¥BD,GR))
(7 (E48D,GR), (EMBD,GR)) )

DIFF+LOTAR+LGIR+Z4BDE  HP) (DIFF+
{2, (DIFF+LGTRE, HM) , (DIFF+LGTR#, HM)

L

)

DIFF+LGTA#+LGTR+EMBD# HP& éoxsp +LG

(¢, (DIFF+LGTR#, (DiFF+LGTRS, HY))
.

(DIFF+LGTASLGT +nMBDO,SP£* DIFF+LGTA+LGTR#+DEEP#+EMBDE,SP))
(? (DIFF+LGTR+D SM) | (DIFF+LGTR+DEEP#+EMBDS, SM)) )

R
(DIFF+LGTA+LSTR +EMBD#,3P), (DIFF +LGTA+LGTR#+DEEP#+EMBD#,SP))
( , (EMBD,GR), (EMBD )

(?

2

(z GgAI+LGIR¢EMBDI,HP))
T
)

(v A#+LGTR+EMBD#,HP))

+
HM )
s p
SP#+EM
P
)

v‘& m*"l

£
E
28
aR

L
D
¥
#+D
8D,

I O

,_______‘
i

= =




(3-DEG]

{ ?2-JUNCTIONS]

( (? (EMBDéGR)ﬁ§E?BDégR&A ;
?,(EMBD,GR), (EMBD,GR )

(Y-JUNCTIONS]

( (VS6D¥EP##MOVEO¢DIFF#+EHBDI L‘Zﬁ§ ?ggg OVE#+DIFF#+EMBD# LK&&

#+MQVE #+D P#+MOVE #+DIFF #+EBD# ;g
DEEP#+MOVE#+DIFF#+EMBD#, LK) ) (DESP#+MOVE #+DIFF#+EMBD#,LK)) )

( (v (DnEP#*MOVaI+DIFFO+BMBD# UP), (DEEP#+MOVE#+DIFF #+EMBD#, UP))
SV EMBD, GR; EMBD g;
V,{EMBD,GR),(EMBD,GR)) )

(sqso GR), (EMBD,GR))
s E DEEP#+MOVE#+DLFF #+EMBDF, UP) , (DSEP#+MOVE#+DLFF #+SMBDH, UP))
V! (DIFF#+EMBD#, US ), (DIFF+LATA+LGTR#+DEEP#+EMBDS,SP)) )

( (v (EMBD GR),(EMBD,G
éF+LuTA+LGfR#¢DEEP#+EMBD SP),(DIFF#+EMBD#,US)
V DEEP#+MOVE#+DIFF#¢SMBDI up), (DEd #*MOVE#+DIF§#¢5MBD! ue)) )

( (v,(EMBD,GR),(EMBD,GR))
v, iDE P#+MOV30+6IFF#+°MBD# up ,g DSZP#+MOVE#+DIFF#+EMBDE, LK;;
V, (DEEP#+MOVE#+DIFF #+EMBD#, LK ) , (DEEP#+MOVE #+DIFF #+2MBD#, UP

(W-JUNCTIONS]

( (C 60 FF#+EMBD# uu& &DIFF#+E%BD# 1
s DEEP#+MOVES+DIFF#+EMB P § 2E
V, (DEEP#+MOVE#+DIFF#+MBD#, LK), (DEZ

( (C,(EMBD,GR),(EMBD,GR))
tv, éDubP#+ﬂOVb#+bIF?#+EMBD#,UP) (DSEP
(V, (DEEP#+MOVES+DIFF #+E4BDY LK ) | (DZEP

‘ (T-JUNCTIONS]

( (z (bMBD GR),(EMBD,G
§DELP#+WOV8#+6IFF#+LMBD# up g 2 DEEP #+MOV€#+DIF?#+SMBD#,LK§;
V, (DEEP#+MOVE #+DIFF#+EMBDY, LK) , (DEEP #+MOVE#+DIFF#+EMBD#, UP

(z (snso GR), (EMBD,G
5 DIFF+LET AoLGfRO+D-EP'+ D¢#,S % DIrFl+EMBDI 2
v, DEEPO»MOVL#+DIFF#+€HBD# 2)  (DEAP#MOVE #+DIFL #+5MBDS, UP)) )

¢ (v

}

P#+MOV€#+DIFF#+EMBD#,LK;;
P#+MOVE#+DIFF#+EMBD#, UP

P#+MOVE#+DIFF#+EMBD#,LK))
#+MOVE#+DIFF#+EMBD#,UP))

«w
~~

( (z (amaotcﬂ).(saao g 4
s .{Dau94+mov50+6rs t«_mao# up) éos-p +MIVES#DI F# EMBD#,UP))
1 V) (DIFF#+2MBD#, U3 ), (DIFF+LATA+LOTR#+DZEP #+EMBD#, SP)) )

( (2 (LMBD Ga), (EMBD,GR)
2 uéPl4MOVn'+6IFFO+EMBDI Msz (DIFF+LGTA+LGIR#+DEEP#+EMBD#,SP))
DIFF+LGTR+DEEP #+EMBD#,SU) , (OSEP #+MOVE#+DIFF #+E4BDS, UP)) §

( (z (nnao GR), (EMBD,GR))
s DEEP #+MOVE #+DIFF #+E4BD#, UP ), (DIFF oL
V, (DIFF+LGTA+LGTR#+DEEP#+EMBDE, SP), (D

( (Z,(EMBD,GR), (EMBD+LGTR#,GR))
2 DEEP#+MOVE#+DIFF #+EMBDA+LITA#+LGIR 2 Ud) (DIF’#LuTA##LuTR#bMBDO HP))
v, DIFP+LGFRO,H!) (DEEPO#MOV&I+DIFF'+5MBD‘ ue))

GTR+DZEP#+EMBD#,SM))
EP #+ﬂOVn'¢DIFFI+aMBDI,M>)) )

hanasollh e POSSN — et a—. . ——-_—*J
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LGTR#,GR) &anao uazz |
Phed va..o FF#eEMB upz DIFF+LGTR#, HM)) b
F+LqrAl¢LGIR’EMBDO.HP) ) EPO*AOV&'+6IFF0¢;ABDO¢LUIA'0L0TR Ud)) )

gp
*

(
+MOVE#+DLFF #+FMBO#, LK) fos ¢ !0VEO¢DIFFO¢E&BD'¢LGIR' LK&
EP#+MIVE #+DLFF #+cBDA+LATARSLGIR IsyouueroLura¢-qa #,4P))
IFF+LGTR#,HY), (DEEP #+MOVE#+DIFF# +énaob LK))

P#+MOVE 8+DIFF #+S4BD#+LGTRS, LK) , ( uPl#MOVE'#DIFFOoaHBDO LK))
aspo¢aovso.orpe:¢sqaop LK) (DIfF«LurR
LFF+LGTA#+LGTR+EMBDS#, HP 6°EPO+MOVE0061FF0+EMBDO¢LUTAI¢LuIR LH)) )

FF#+2MBD#, UM) (Drssa*naao:¢ucrao uM))
DEEP#+MOVES+DLFF #+EMBDALGTARSLI IR, UH) (DIFF#LUFK'oL”rROEMBDI HP))
DIFF+LGTR#,HM) , (DEEP#+MOVE#+DIFF #+EMBDS, UP))

FF#+ZMBDA+LGTRE, UM), DIFFD#&MBDO uM))
DaEP'»%Oan*DIF?'#nM 04,0 z (DIFFLGTR#, HM))
DIFF+LGTA#+LITR+2MBD#, HP ), (DEEP #+MOVE 0+ DIFF #+EMBD#+LGTA#+LGTR,UH)) )

FF#+EMBD#, UM4) , (DIFF #+EMBD#, Ut
DnEEloMOVE#+gféF!¢LMBD' vy, ESQEP#+MOVbloDIFF0¢=MBDI LK g
DEEP #+MOVE #+DIFF #+EMBD#. LK ) | (DEEP#+MOVS #+DIFF #+EABDS, UP)) )

D?EP!#MOV&!+DIFF'¢%ME£$* q&°§DuEP'+M3Vbl¢DIFF'+bMBDI ,uP))
.

E
F
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B
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D
D
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DIFF #+SMBD#, UM) u#+DIFF#+£MBDE,LK))
DEEP#+MOVE#+DIFF #+5MBD#, LK) , (DIFF #+EMBD#, ) ) )

SEPHLMOVEHDLEF #+3MBD, UP), (DEEP#+MOVE #+DIFF #+EMBD#, UP))
.ésneo ,GR), (EMBD,GR))
' (DEEP#+MOVE #+DIEF #+EMBDE, UP ) , (DIFF#+EMBOS, UM)) )

(DESP#+MOVE #+DIFF#+2BD#, UP ) , (DEEP #+MOVE #+DIFF #+EMBDE, UP))
, (DIFF #+EMBD#, Ud) , (DSEP#+MOVE#+DIFF #+EMBD#,UP))
EMBD,GR), (EM8D,GR)) )

EPD+.OV&#+DIFFO§ HBDI,UP) (DEEP#+MOVE#+DIFF#+EMBD#,UP))
EMBD,GR), (EMBD,GR)
DIFF+LGTA+LGfR3+DEEPl¢9MBD# SP),(DIFF#+EMBD#,U3)) )

SEP#+MOVED+DIFF #+EMBDS, UP% (DEEP#+MOVEP+DIFF #+SMBD#, UP))
DIFF #+S4BD#, U3) (DIFF+Lu R+LGTR#+DIEPP+EMBDE, 3P))
EMBD,GR), (EMBD,R))

EP 4+4OVERDIFE 4+EMBDE,LGIRS, UP (DEEP#+MOVE#+DIFF #+EMBDS, UP))
DIFF#+E4BD#, Ud), (DIFF+LGIR#, HA)}
DIFF+LGTA#+LGTR+EMBD#, HP), (6IFFO+°1BD'+LuIAO+LuTR,MH)) )

EP#+MOVE#+DIFF #+EMBDE, UP ) (DEEP'+MOV&'+DIFFl«EHBDI#LGTR'.UP))
DIFF #+E4BDALLGTARSLITR, MA) (DIFF+LGIAO¢L¢TR+.ABD' HP))

’

S Ll e

S QM QS S S QG <<’6\ <<"\ QN QS QS <°'\ <</\
B —~A1 —~[a) M“] ~

EDIFF+LuTRl HM) , (DIFF'+éMBDb Ued))

( (Z,(DSEP#+MOVE#+DIFF #+EMBD#,UP) (DE&P'+MOVEO+DIFF'¢E&BD'.UP))
| { ,inxrﬁo¢amsonlun) , (DIFF4LGTR+DSEP#+EMBDH,SM) )
| (V) (DIFF+LoTA+LETR2+DIEP#+EMBD#, SP) , (DIFF#+EMBDE,U3)) )
| ( (Z,(DEEP#+MOVE#+DIFF #+EMBDY, ue% DbEP#+ﬂOVa#+DIFFIon!?DO.UP))

s , (DIFF #+24BD#, U3 ), (DIFF+LGTA+LGTRA+DIEP#+EMBD

i ) (DIFF+LGTR+DEEP#+EMBD#,SM) , (DIFF #+EMBDS, UM)) 5

( (2, (DIEPALAOVEALDIEE p+E4BDY UPS govapo+qov5¢¢orsso.s4eo:,ue))
[ s ,{DIFF'+& D#,UM) , [DSE V24 ¢DIFF'+5MBDI. P))
; " (DIFF #+E4BDF | UM DIFF!¢ MBD#,UM)) )
' ( 2z ofspo¢wav=o¢ors?g %!80# up) So,spg»wove'+ozsﬁo«sueoo.up))
; s .$DIFFI¢EnBDl DIFF b~aué “))
; , DESP#¢1OV&0¢DIF§I§EMBDI up), EDIFFO~EMBDI.UM)) )
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EMBD

( (2 (DﬁEP'+MOVu#+DIFF#¢EMBD# UP), (DEEP#+MOVE#+DIFF #+EMBD#,UP))
s EHBD GR) éaMBD GR;; )

‘ {4-D2G]
. (2-JUNCTIONS)
( (2 (enao uR) ZMBD,GR))
anéo. R)
7 anan ca auso,ca
2. (2MBD,GR auao,ca )

[POINI-JUNCTION:]

( (V,(DEEP#+MOVE#+DIFF #+EMBD# sz DSEP#+MOVE #+DIFF #+EMBD# L&))
DsEP#+MOVEl+DIFFO+uHBb' £), oespo+sov;#¢oxss;¢znab s;

v DEEP#+MOVE#+DIFF #+2MBD# LK) | (DEEP #+MOVE#+DIFF #+EBDF, LK
DEEP#+MOVE#+DIFF #+EMBDE . LK) | DPEP#+M0VE'¢DIFFI+aMBD# LK)

( (z DEEP#+MOVE #+DIFF #+EMBD#, LK) , (DEEP#+MOVE#+DIFF #+EMBD#, LK) )
DaEP'oMOVnI+DIFFO+EMBb LR), (DZEP#+MOVE#+DIFF #+2BD#, LK))
v DaEPl+MOVn'+DIFFl¢nMBD# LK), D‘EP#+H3VE#+DIFFO+&MBD' LK ;
(V. (DEEP#+MOVE #+DIFF #+EMBD#. LK)  ( DEEP#+MOVE #+DIFF #+EMBD#,LK)) )

( (V,(EMBD ca) (EMBD, G
V, (DIFF+LG rA¢LGia:+D=aP#osaao' SP), (DIFF#+EMBD#, U3)
" {DEEP#+MOVE#+DIFF#+EMBD#, usz ' (DILP+LGTA+LGTR#IDSEP#+EMBDE , SP))
V. (DIFF+LGTR+DZEP#+2MBD#, SM) , ( DEEP #+MOVE#+DIFF #+EMBD#, UP)) )

GR), (EMBD,G

DEéP#+MOV“#+6IFF#+SABDI upz DIFF+LGTR+DZEP#+EMBD ,sngg
DIFF+LGTA+LGTR#+DZEP#+EL & (D?EP#+MOVat*DI§§I+BM #,M3))
DIFF #+EMBD#, US (DIFF+LGIA+CGI }+DEEP#+CMBD#, SP)) )

»

1]

DIFF#+EMBD#,UM) (DIFF+LGTR+D&EP#+EMBDOLSM))
gDIFF+LGTA«LGI§#+D"EP#*EMBD# bP%FSDIF +EMBD#,

)

L~

( (V,(EMBD

(v

DEEP#+MOVE#+DIFF #+EMBD#,M3), ( +LUIA+LGIRO+D§%z0+BABDl SP))
DIFF+LGTR+DEEP#+EMBD#, S¥) , ( cEP#+MOVu'+DIFr#+bMBDl,UP)) )

(
v
v
v
(
v
v
v
(W SDIFF+LGTR+D&EPO+EMBD' +SM), (DIFF#+EMBDF,UM) 2
, (DEEP#+MOVE#+DIFF #+EMBD#, UP) , (DIFF+LGTR+DEEP#+EMBDS, SM))
v DIFF+LGTA+LGrR'+DuEPO+EﬂBD' DP) (DEEP'+HOV5'+DIFFI+EABD' M3))
Vv, (DIFF#+EMBD#,U3), (DIFF+LGPA+cGIR*+DnEPl+uiaDO 3P)) )

[(PENTA-JUNCTIONS]

-

EP#+MOVE#+DIFF#+2BDE,

- -

-

, Feold A+LGfRO+D~EP#+EMBDl sv) SDIFF#+uMBDO
V) (DZEP#+MOVE#+DIFF #+EMBD#, U ; $ o IvMOVn#¢DIr§l+bﬂBDI LK;;
v, (D LK), (DEZP#+MOVE#+DIFF#+EMBD#, UP)) )
( (c sau D,GR), (EMBD,GR))
DEEP#+H v=c+61ssc+snao' UP), (DEEP#+MOVE #+DIFF#+EMBDH, LK;;
DSEP#+MOVE#+DIFF #+EMBD# . LK DPEPI¢MOVnI¢DIFF0081800 up
( (C,(DIFF#+EMBD#,UM), (DIFF+LGTR+DEEP#+EMBD# :M))
v, DIFFoLGtA*LGTﬁOoD-8Pl¢EMBDl.;Pg SDIF #+5MBD#, U3))
v, DEEP#+MOVE#+DIFF #+EMBDS, U ; 28 0+Mov=04019é0.-1ao: LK }
V, (DEEP#+MOVE#+DIFF #+2MBD#, LK) ) (DEEP#+MOVE#+DIFF #+EMBDH, UP)) )
( (Cg(DIFF+LGTR+D"EPO¢EWBD! ,S4) , (DIFF #+EMBD#, UM

-

( (cgssuso GR) EMBD GR)
. (DIFF#+EMBD#,US), DIFF+L¢TA¢ﬁ TR#+DSEP#+EMBD#,SP)
))
, (DZEP#+MOVE#+DIFF #+SMBD#, UP &D.se:¢ubvs;+oxsso+anaoo LK;;
' (DZEP#+MOVE#+DIFF #+E4BD#, LK), (DEEP #+MOVE #+DIFF #+EMBDS , UP
DIFF#+EMBD#, U3 ), (DIFF+LATA+LGTR#+DZEP#+EMBD#, SP))

S
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( (C,(EM8D,GR), (£48D,3R))

v, DEéPOoM VE#+DIFF#+SMBD#, UP ), (DEEP#+MOVES+DLEF#+SMBDH, LK) )

V. (DZEP#+MOVE #+DIFF #+EMBDS, LK;, DZEP#+MOVE $+DLEF $+2MBDF | Lxg;

V! (DEEP#+MOVE#+DIFF #+24BD# . LK) | (DESP#+MOVES+DIFF #+SM3D4,0P)) )
( (C,(DLFF#+ZMBD#,UM), (DIFF #+SMBD#,UM))

v, DEEP’#MOVQO+D£FF4+&MBDI up), (DEEP#+MOVE#+DIFF #+EMBDS, LK

V! (DZEPS+MOVE #+DIFF #+EMBD#, LK) | Dssp»,novaooorsio.sasov,LK

V) {DEEP#+MIVE 8+DIFF BoEl soo CK) ) (DZEP#+MOVE#+DIFF#+EMBD#,UP)) )
( (2 (suao GR),(EMBD,GR))

V, (DEEPO+YOVE #+DIFF #+ZMBD#, UP ), (DEEP#+MOVE#+DIFF #+EMBDS, LK

V. (DEEP#+MOVE #+DIFE d+EMBDS, LK ) | (DEEP#+MOVE #+DIFF #+EMBD#, LK

V. {DEEP#+MOVE #+DIFF#+5MBD#, LK) | (DESP#+MOVE #+DIFF#+EMBOP,UP)) )

( (Z,(DIFF#+E4BD#,UM), (DIFF #+EMBDS,UM))

v, ous?o+uovéo+oiyso.aneot upg. DEEP#+MOVE #+DIEF #+EMBDS, Lxgg
V) (DSEP#+MOVE#+DIFF #+2MBD#, LK) | D€EPO¢!0V:D¢DIFFO¢€HBD' K
V. (DSEP#+MIVE #+DIFF #+2MBD#, LK) , (DEEP#+MOVE #+DIFF#+2MBD#, UP)) )

(DEG-5]

(2-JUNCTIONS]

( (2 gsaao GR ) aaaoéca))

2, aaao Ga ' {EMBD)GA
?. EMBD!GR ), (EMBD,GR
EMBD.GR) | (EMBD.GA)) )

[porur-Juugrxoxs)

( (v DuEPi+MOVu#+DIFF#+SMBDl LK) SDSEP'+MOV50¢DIFF#¢aMBDO LK))
DESP#+MOVE#+DIFF #+SM3D4, ,(DSEP#+&0V;0¢DIFFO+ LK)
DEEP#+MOVE #+DIEF #+EMBDS LK;, DEEP#+MOVE #+DIFF#+E naoo LK ;

v DEEP +MOVE 0+ DIFF ¢+24BDY . LK) L (DESP#+MOVE #+DIEF #+2dBDE ) LK
DEEP #+MOVE3+DLEF ¢+EMBO# LK) | (DESP#+MOVE #+DIFF #+EMBD#, LK)) )
( (z (D“EP’+MOVE'+DIFF#+51300 LK) (DSSP0+WOVEO¢DIFF#‘LMBDI LK))
V, (DZEP#+MOVE#+DIFF#+EMBOR, L&), (DSEP#+MOVES+DIFF #oEMBDF, LK
' aspo¢nov=4+nraso’umaoo LK L {DEP#-MOVE J+DLEF#+S4BD LK
' {DEEP#+MOVEA+DIFF #+2MBD2 LK) | (DEEP#+MOVE#+DIFF #+EMBDH, L
(v.(DSE o*uovec§oxssc+eaaof LK) ) (DEEP#+MOVE #+DIFF #+EMBD#, LK) )
( (v,(EMBD, (EMBD,GR))
, (DI éraﬁucfaa¢o~ap¢+snaoo,sp) (DIFF#+E4BD#,US))
) (DEEP#+MOVE#+DIFF #+MBD#, U° .énsé9¢+nov='+oxsé0+sn z)
» (DZE LS DIFF+LGTA+LGTR#?+DZEP#+EMBO#, SP))
' {DIFF+LGTR+DEEP#+EMBDS, SH) , ( DEE P #+MOVE #+DIFF #424BD#, UP))

P

P

GR

Bis
§9¢10Va0+DIFFI¢EMBDO
GR),(EMBD,GR))

P

F

P

v
v
{
v
év
v
v
(EMBD
v, (DLEF dTA+LGfRO¢DanO+S%BDI,SP éoxsso+=naoo ,US))
V. (DEEP#+MOVE#+DIFF #+SMBDS,MS (ox# #LuTA+LGTR#+D=EP¢+°1BDl sP))
V' {DIFFsLGTR+DZEP#+EMBDS, SU) , ( DSEP#+MOVE#+DIFF #+EMBDE, LK) )
V. (DEEP#MOVE#+DIFF #+2MBDP, LK) , (DSEPS+MOVE #+DIFF #+EM sbc ue)) )
( (V,(EMBD,GR),(E4BD,GR))
v, 3&?'*“0VE’#6IFE'+EMBD' ue), (oesei¢nov=:.oxrso+smaoo LL))
V. (DEEPP+MOVE #+DIFF #+EMBD# . LK) | (DIFE+LGTR+DEEPS+EABDE, S1)
V) (DIFF+LGTA+LGTRO+DSEP#+24BDS ) SP) , (DEEP#+MOVE#+DIFF #4EMBD#,4S))
V. ({DIFF#+EMBO#,US), (DIrFoLuTA¢ﬁ¢TR5+D~8?0+¢d800 5P)) )
( (V,(EMBD,GR),(EMBD,GR))
V, (DELPRUOVERDIFF »¢aqso¢,u9),go:sr.zcra»oaap"amaoo,sn)&
v, LFF¢LGrA¢L rao+oaapw.snao», 92‘ﬁnsapi.nov30¢orgso.sns #,L3))
V! {DZEPS+MOVE #+DIFF #oZABDE LK).ZD:; #oMOVE#+DIFF #+E480F, UP) )
V) (DIFF#+EMBDS,US), (DIFF+LATA+LGTR#+DZEPF+SABDF, SP)) )

. SR
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( (V) (DIEEA-2MB00, U} | (DIEELLOTRLIDEERASENBOL, 3d))
V, (DLEE4LG TASLGTRASDIEPI+EMBDR, S x(oxrbo.auaoo
v
v

))
» (DEEP#+MIVE#+DIFF #+EMBDE, UP§ DECP#+MOV loDIF#loEMBD'
)

J

DEEP#+MOVE#+DIFF#+EMBDE,LS
» (DIFF+LGTR+DEEP#+EMBD#, S¥)

( (V,(DIFF#+EMBD#,UM)

(DIFF+LGIR+DSEP#+EMBDS, SM

))
,;DIFF+LGIA+LGfﬁloDaEP'#EMBD' b?)

(DIFE#+EMBD#,US))
DuEP#+MOVEl¢DIFF!+EMBD',Mbl
DIFF+LGTR+DZEP#+ZMBD#, M), { DEEP #+MOVE#+DIFF #+E4BD

DEEP#+MOVE #+DIFF #+EMBDS LK) (D’EP'+1OV5!+DIFr'¢EM86#

v

v

v

v

( (v 6DIFF¢LGIR+D~EP#+EMBD' + M), (DIFF#+3MBD#,UM))

V' DEEPO+10VB#+DIFF!¢EABDO gp D°EPO¢M6V&I+DIFF¢+ EMBD#,
v,

v,

D.EPO+MOVEO+DIF£!¢8HBDO LK), (DIFF+LGTR+DEEP#+EMBO#

DIFF+LGTA+LGTR#+DEEPR+EMUBDE bP&’(DE~P'¢HOV&'+DIFP#+&AB&I M3))

DIFF'+EMBDO U3), (DIFF+LGTA+LGTRI+DEEP#+EMBD#,SP)) )

DIFF+LJTR+DZEP#+EMBDE, SM), DIFF#+€MBD# UM&)
P

¢ (v
év,iDEEPOoMOVuO+DIFF#+nMBDO IFFoLGf
v,

ZP#+EMBDE, 34

DIFF+LGTA+LGIR#+DSEP#+EMBD %é DEEP#+MOVE#+DIFF #+EM

DEEP#+MOVE#+DIFF #+EMBD# , LK) | (DEEP#+MOVE #+DIFF #+EMBDF, U
DIFF #+EMBD#, U3 ), (DIFF+LGTA+LGTR#+DZEP#+EMBDS, SP)) )

{ PENTA-JUNCTIONS)

( (¢ (EHBD GR),(EMBD,GR))
+LuTA+LGfRI+DuEP#+EMBD',SP) (DIFF#+2MBD#,Us))

V D’EPO#MOVE!#DIFFO+EMBD# UP;, DSéPl+ﬁOVbl¢DIF§#¢EMBDl

V DEEP#+MOVE#+DIFF#+EMBD#, LK ,kDEEPi¢M0V€#4DIFFO+EM8D'

(V (DEEP'#!OV&#+DIFFO¢EHBD' LK), (DEEP#+MOVE#+DIFF #+E8MBD#,

( (cC (EMBDxGR) (EMBD,GR)
Pl+M3Vn006IFF#+EMBDI UP),(DEEP#+MOVEZ+DIFF#+EMBDH,
V DnEPlo!OVbl+DIFFl¢E%BDI LK D°EPO¢10V€#+DIF?O¢LMBD!
V, (DEZP#+MIVE#+DIFF #+EMBD# LK D°EPO¢MOV&!+DIFrO¢SMBDl

DIFF#+EMBD#,U3), DIFF#LuTA+L
DIFF#+EMBD#,UM)

TR#+DEEP#+EMBDS,3P)) )
( (C (DIFF+LGTR+DZEP#+EMBD#, SM))
DIFF+LGYA+LGT§l+D.BPl+EMBDl SP) ;DIF§,¢5MBD ))

DEEP#+MOVE#+DIFF#+EMBD#, UP DEE '+10Vbl+DIF§O+aMBDI
DEEP#+MOVE #+DIFF #+EMBDF, LK DEEPO+MOV&!+DIFr'+ MBD#,
DnEP#+WOVa#+DIFFi+EﬂBD' LK), D-EPO+MOVBI+D*°"0+EHBDD

DIFF+LGTR+DEEP#+EMBDE,SM), (DIFF#+BMBD' UA))

' DaEP#+MOVn'¢DIFFO¢nMBDI ue), (DEEP'+M6V§'+DIFF#+°MBDI
DEEP'+MOV&O#DIFF'+EMBD! LK ED’EP##MOVL'#DIF?'+EMBDI
D°EPO+M3V€0+DIFFO#EMBDO LK), (DEEP#+MOVES+DIFF#+EMBD#

, (DIFF #+2MBD#,U3), (DIFF+LATA+LGTR#+DZEP#+EMBDE,SP))

V
(
v
v
v
v
v
v
v
(EMBD,GR ), (EMBD,GR))

s. DEéP#&MOVn'#bIFF'#EMBD# ue
v

v

v

v

v

(

v

v

v

v

( (¢

- -

?
Ler

s (DEEP#+MOVE#+DIFF #+EMBD#, LK
» (DEEP#+MOVE#+DIFF #+EMBD#, LK
’ DEEP#+10VS'+DIFF'+EMBD' LK

DEEP#+MOVE#+DIFF#+EMBDE,
DEEP#+MOVE#+DIFF #+EMBD#
DEEP#+MOVE2+DIFF #+EMBD#

ud) )
; ab?l#MOVb'tDIFFl#EdBD'
(

;D“EPO+MOV&O+DIFF#+aMBDI

DIFF #+SMBDE, UM) éDIFP'+SMBD!
, (DEEP#+MOVE #+D1FF #+EMBDS, UP
» (DEEP#+MOVERLDIEF#+EMBDE, LK
s (DEEP#+MOVE#+DIFF #+EMBD#, LK
, (DEEP#+MIVE#+DIFF #+EMBD#, LK

)y

E4BD,GR ), (EMBD, G
DELP'oHOVaOoﬁIFPO¢aHBDI up
DEEP#+MIVE#+DIFF #+EMBD# | LK
DaEPl¢MOVbl+DIrFi¢aABDD LK
CEP#+AOVE#+DIFF #+SMBD# LK

DEEP#+MOVESLDLFE #4+EMBOS,
DEEPF+MOVE#+DIFF#+EMBD#
DEEP#+MOVEF+DIFF#+EMBDE,

EP#+MOVE#+DIFF#+EMBD?,
SEP#+MOVER+DIFF #+EMBDR,
SP'oﬂOVE#oDIFrl+_MBD'
SPA+MOVESDIFF #+21B0F,

~~
~~
[g]
PNTINSNSE OONINITNIT. SNSNITNINE PSS NSNS

’
A
’

.. — - -

LK))
DIEF +LGTASLGTRA+DSEPEvERBDS . SP))
EP#MOVESeDIFF #oEMBDS, UP)) )

éF«LGTA#LurRl+D-EPl+EM§?# SP))

uP)) )

LK))

&&l La))

LK

LK
&

)
&))
5833

L‘§$
LL

up)) )
Lg))
G833

LK
LK
LK
up

LK)
mi

UP

id]

Jde)) )




LU ~m

162

( (2, (DIEEA4EMBDS L0 Igou-‘t-'nmaoo uu&
, (DEEP#+MOVES+DIFF#+EMBD#, UP Y, (DEEP #+MIVE#+DIFF#+E4BD#,LK))
v, DEEP#+MOVE #+DIEF #+EMBDS, LK), ( DEEP#+HOVES+DIFE #424BDE , LK
v DEEP#+MOVES+DIFF #+EMBD#, LK) | ( DEEP#+MOVE #+DIFF #+EMBD#, LK
Dasnmovuwwsumaw.x.x DEEP#+MOVE#+DIFF #+EMBD#,UP)) )

[END-OF-VER [ICES]
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Appendix E

laage Formats

E.1. General Image Format

Images of any resolution and pixel sizes from 1 bit to 36 bits =may
be encoded. Optional wuser information may be encoded. 3Several such
option fields commonly used are included in this description. Progzraas
are avallable for digitizing images into 252x238x6 bit, 252x238x9 bit,
and 504x476x6 bit forms.

; Field(word) Description
i
0 Picbure LenEtQ (Image+Header)
1-3 EFT Links/Markers
§ee Color Triples)
4 Atom Tgpe (Always = 2)
S Highes Pixel Cocrdinate (X Dimeasion
Minus 1) - High
6 Ha hosbll Pixe Coordinabe (Y Dimension
nus -
7 Nu:ber gf Gral levels gQuantizabion Steps
es =z 54 steps) - GL ]
8 Minimum Pixel Value - Min I
8 Maximun Pixel Value - Max I
1 Avorago Pixel Value - Ave I
1 Offset to Pixel Pointer List
12 Qffset to Picturse Data
13=-15 Offsets to Intarlgaged Picture Data
(Only for 50uUxu7 bit pictures
directly rrom the maging routines)
16=-(15+m) User’'s Flelds (a is words of user's

fields)

L e o e g gy .
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Coazonly Computed Fields ’ ;

BRGGtaa® ACCEG@eE Do oo 1

Pixel Size = ( C( C( Q(11) ) ) .and. 007700303220 )/10302337

User Fields Length z C( O(11) ) - 0(16)

Orfset to First Picture Word (P.xel [High Y,0]) = C( 0(12) )

Offset to Pixel X,Y s Offset to Firat Picture Word + C( Q(11) «
X8Y - n? szS/Pixel Size) ) )
XY - mgn 1 7 (36/Pixel Size)

n .and. m = Logical "AND" of n and a; Oén; = Offset n;
n .mod. m = Remainder of n/m; C(n) = Contents of n;

Comaon User Defined Fields Description

16 Time (in Milliseconds) Since Last
Image Was Taken (for picture sequences)

17 Edge Speeds (Ses Edge Pictures) - E 3Speed i,
18 ;e Position Modifier Field size

-

(See Edge Pictures) - E Pos

E.2. Color Image Triples

Color images are stored as sequences of 1images coasisting of a
black/white image followed by one or more single color images (red,
green, or blue spectra‘', All images are in the g3Ieneral image foramat.
Tne red, green, or blue images @may be omitted. Tne red image is
associated with the UP link in the black/white image. Ine green image
is associated with RIGHT, and the blue with LEFT. If a link field of
the black/white image is non-zero, the associated colored image 1is

available for reading.
E.3. 1Image Format for Edges

The output of all the sdge detection systeams described in this
thesis are in the form of image triples. Tne first image is the input
gray scale image (dimensioned (High X + 1) by (High ¥ + 1)). Tne next
is 3 Y £dge fimage having one pixel for each junction of pairs of pixels
in the gray scale image lying on a vertical line. The dimeasion of this
image is (High X + 1) by (High Y). Following is the X £dge image,
having one pixel for each junction of pairs of pixels in the gray scale
image lying on a horizontal line. Tnis image is dimensioned (High X) by

L ot - o e ey gy o a— s » Bl A
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(Bigh Y + 1),

1 N £ach non-zero pixel in an edge picture represents 23 significant
l intensity traansition witn maximur tendency betwesen the corresponding
gray scale image pixels. Tne edge orientation is horizontal (in the Y
Edge image) or vertical (in the X Sdge image). Edge pixels carry edge

type, transition size, and fine positioning fields. Edge Ltype fields
require no bits or one bdbit. Transition size field requires the numbar
bits needed Lo encode the saximua adge speed (ses Edge Speed field in
the general image format section). TIne edge speed is an index to the
edge mask that matched the local intensity phenomenon. Tais noaminally
requires nuabers from 1 to S. Tne basic position of an edge is
specified by its location in the picture matrices, however, for fine
tuning position plus or minus 0.5 pixel positions the edge position
modifier field is used (E€ pos). The size of this fiald is variable
(see Edge Position Modifier field in the Zeneral image format section).

Edge Pixel Schematic

EE pos &€ spd 1—6& ‘tl\,’

Edge Position Fine Tuning

E pospos = 2"E pos - 1
Position For X £dge At X,Y = (X + (EE pos - E pospos/2)/E pospos,Y)
Position For Y £dze At X,Y = (X,Y + (EE pos - £ pospos/2)/E pospos)

E.4, Image Format for Regions

The data sets produced after region aggregation coasist of image
quadruples. The first is an intensity image, the second is 3 region
index image (same dimension as the intensity image), and the last two
are X and Y edge images (formatted as in edge data sets). Each pixel in
the rezion image contains a region marking nuader. Tnis auabar indexes

i into a region list. Each region has one region list eantry, containing
. the following fields:
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Field(word) Description

Area (pixels)

X Center of Mass

Y Center of Mass

Average Intensity

X for a Pixel in tne Resgion

Y for a Pixel in the Region
Formation Order

X Edze Density

Y Edge Density

Perimeter

Standard Deviation of Intensity
Perimeter with Fraas of Picture

- OO 0O~ OWN SN - O
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Tne region list is written as a bdbinary list formatted as follows:

Words Dascription

High X for Original Image
High Y for Original Imafe
Gray Levels for Original Image
Time Original Image Wdas Digitized
Regzion LIst Atoas

12 Words of Region List Atoas

[ P SRR Sy

i
E.5. V-3 And V-5-3 Format

Vertex-String(-Surface] (V-S[-3]) format graphs are aritten in
binary to the filing system as lists of atoms and links:

Words Description

High X for Original lmage

High Y for Jriginal Imafe

Gray Levels for Original Image

Time (Optional... In V-3-3, aot V-S)
String Atoas (m)

Words of 3tring Atoas

Edge Point Atoas (n)

Words of Edge Point Atoas

Vertex Atoas (1)

Words of Vertex Atoas

Verbox-Sbring Associations (f)
Words of Vertex-3String Associations

Optional... in V-S-3 format:
1 Reglon Atoams (1)

1812 dords of Reglion Atoas
(See Region List Formit for Each Entry)

S 8
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String Atoas:
Field(word)

#8¢{n,m> notation: n is field posit%on (bits rignht of the field)
m is field size

gdge Atoas:
Field(word)

oecaeseoee

W =

Vertex Agoms:
feld(word)

Vertex-String Associations:

Field(word)

e e e g—————t o e
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Description

Edges<18, 18>, Real Edges<0,18>

RO (left}<18,18>, R1 (rignt)<0,18>

Average Gray Level in RO

Average Gray Level {n R%

Average (Gray Level)®#2 in RO

Average (Gray Level)®®2 in R1

Averaze (Gray Level RO - Gray Level R1)*®2
Average ungarg Diffusion

Low Vertex<18,1B>, High Vertex<0,18>

Low Bdge Index<18,18>, High Edge Index<0,18>

in bits)

Description

Subjective/ObJeccéve<3§,‘>. ’
Transition Size<28,7>,

Edge Index<14, 14>,

Sbring Index(b,lh)

X Position

Y Position

Tangent Angle (Radians)

Dascription

X Position {
Y Position

Position Uncertainty ;
Psuedo/Real<35, 1,
Vertex-String Association Low<16.1g>,
Vertex-String Association High<0,13>

Description

Vertex Index<18,18>,

String Index(O,‘?)




e

3.6, HeC Fforaat
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Tne Half Chunk Graph format is used internally to the multi-image

correlation systea,

recoznition systea.

Words

-l b

a8
oo

F -

(ST
s ad Bt P asl) s B
-4

Object Atom Format:
Field(word)

and s written to provide input to the odject
when written, the foramat is as follows:

Time Elapsed Since Last Pacxket
Total Time Elapsed
Frame Intervals in This Packet
Qb jects Detected (Connected H-C
Graphs After Opject Segmentation) - =
words of Object Atoms
Nunber of Rsgions/Surfaces - n
Words of Object-Surface Associations
Number of H-C Atoas - |
wWords of H-C Atoms
Nuasber of X{Z Atoms - i (Same as H-C's)
Words of XYZ Atoas
Number of H-C Associations - j=i®y
Words of H-C Associations/Links:
E-link, 3ide 0
E-link, Side 1
X-link, 3ide J
X-1link, Side 1

Description
b ject Typs Flags
Object Is 2-d<3§.‘>,
Object Type<33, 2>,
ygel rxpe Description
Significant Qoject
1 Insignificant bgect
2 Ligh in% Effect bAech
3 around (Qccluded) Chject
Transform Type<3d,2>
TyBe' Type escription
-d Translation, 3-d Rotation
1 -d Translation, <2-d Rotation
2 -d _Translation Only
3 o Transfora
Object Has Curved H-C's<32,V>
Low H-C Index<18,18>,
High H-C Index<d,13>
X, Y, Z Translations
Aipna, Beta, Gamma Rotation Angles
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dalf Cnunk Atoa Format (d-C):
Field(word) Description
0 Type Flags<18,18>,
35/30:
Curved/Vertex,
Object /Non-objegt/Lizhting
Surface Associacion<0,1§>
1 Tangent/Cnange in Tangent
2 Length Side
R Length Side 1
Properties Side 0
S Properties Side 1
Prop# Prop Description
0- Intensity Cnhops
§ Boundary Diffusion
5 Absolute Ligntness (Darkest,
Lightest)
6 Relative Li;htness (Dark/Lignt,
Light/7Dark)
g Tangency Difference
Ratio Variance
8 Side Variance
1 Reflective Variance
11 Roughness
12 Real/Subjactive Index
13 Depth Variance
1 Motion Variance
15 Regzion Embgddedness Index
6 Labaling Side 9<18,18>,
Labsling Side 1<0, 13>
Linked,
Unlinkedes,
Unlinked-
Pure Highiighc+.
Pure Highlight-,
Pure Shadow+,
Pure Shadow-
Unlinked- & éround.
Uulinked+ & Snadow+,
Unlinked- % Snadowe,
Unlinked+ & Highlignte,
Unlinked- & Highlighte,
Linked % Snadowe,
Linked & Highlighte
Optional... Not in H-C Format Written to Filing Systea:
X Center
Y Center
X 3ide J
Y Side ]
X 5ide 1
Y Side 1!
Spare Word
it ity i

L
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XYZ Atom Format: :

Field(word) Description
0 Curved/Vertex<33, 1>, ]
Associated H-C Index Nuabar<13,17>, .

2D730<17, 1>

Frade Nuaber<Q,17) (Not on Written XYZ) .
1 X Coordinate for H-C Center o

2 Y Coordinate for H-C Center .
3 Z Coordinate for H-C Center (0 for 2D) ce
Object-Surface Association: o
Field(word) Description ’ L.

3 0 Surface/Region Number<18,18>, 3
Object Graph Nuamber<0,17>

E.7. Ooject Library Format ‘}

Streams of object packets are read by the recognition program, one

isolated subgzraph at a time, to be incorporated into the object library.

pamm 70
| S,

This is done by either matching an existing object library eantry or by
forming a new one (if no initial object library file exists, the first

po———
| G-

object matches nothing and is used to begin a library). Library files

are wmade up of a components list, followed by a strean of object graphs

| i)

(expressed in terms of references to the atoms in the components list):

Words Description l!
1 Nuaber of H-C Prototypes in the .
Components List - a
m*2 Words of H-C Prototype Atoas l!
1 Number of Object Graphs - n -
n#*2) dords of Oonject Grapn Directory Entries
? Object Grapns, Zach Start on a New Block
Boundary []
Object Graph Format g
' Words Dascription I
, 1 Nuaber of H-C Component Indexes - a2
m Words of H-C Component Indexes
a5 H-C Links: !
£-link, Side 0
-link, Side




i. 1m

R-C Component Format:
‘e Field(word) Description

0 Non-shape Properties, Side 0<18,8>,
Non-shape Properties, Side 1<27,8>
(selected from H-C Properb{es)
Length Ratio Pro?erty<0.18>
1 Curvature Angle Change of Tangent)
Proggrby<18.1 >

Index into Components Llst<0,18>

Object Graph Directory Entry Format:

Field(word) Description
0 Jb ject Gragh First Block<0, 182,
Extension Graph Firgt Bloek<13, 18>
1 Blocks in Graph<0, 13>
Time Entry Was Made<18,18>

2 Pointer To first Order Histogram
(In Memory Only)<0,18>,
Histograa Offset
(In Memory Only)<18,18>

3 Index To First Object uraph<9.16>
(In Extension Graph Eatries),
h-19 Object Name
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Appendix F

Prograzs aand Functions

£.1. Required by All:

LIBVIS.REL Vision and Grapnics Runtime Library

FASLIB.REL Picture Digitizing Ruatime Library

VISION.BEG Vision and Grapnics REQ'd Files i
TTYIO.BEG Terainal Input/Output ;
NUMIO.BEG Nuznerical Input/Qutput
FILIO,.BEG File Input/Jutput
MISC.BES Keyword Processing
CALLI.BEG System Calls !
MAIN.BEG Prologs and Egilogs |
FLOAT.BEG floating Point Conversions :
PICTUR.3ES Picture foramat Definitions
STRUCT.BES Array Definirions

G T
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f.2. Main Line Systea

Prograa(.lang)

PSNAP(.BLISS)

SM( .BLISS)
EDGES (.BLISS)

FILTER(.BLISS)
REGION(.BLISS)

ELIST(.BLISS)

STRING(.BLISS)

REGSTR(.BLISS)

SMLSTR(.BLISS)

CORLAB(.BLISS)

GAIST(.BLISS)

Requires

EP,BEG
E.BEG

EP.BEG
AREA.BEG

PI1.BEG
STRING.BEG
SQ.BEG
P1.BEG
COMPAR .BEG
STRING.BEG
STATS.BEG
SQ.BEG
PI.BEG
STRING.BEG
AREA.BEG
3Q.BEG
PI.BEG
STRING.BEG
AREA.BEG
CORLAB.BEG
S%.BEG
STRING.BEG
AREA.BEG
PI1.BEG
STATS.BEG
HC.BEG
CORLAB.CCL
P1.BEG
SQ.BEG
HC.BEG

CL.BEG
GHIST.CCL

Description

Frame Integrate 3 Images

Reads From Silicon Vidicon

Writes To a Picture File
Smooth-Enhance

Reads and wWrites Picture Files
Detect Variable Transition Edges
-Mulbigle Template Operator

Reads From a ?icture File

drites Edge Triple File

Remove Isolated Edges

Reads and Writes Edge Triple Files
Detect Connected Regions

-Multiele douogeneit{ Jperators
Reads Edge TriB&e Files

Writes Region Quad Files

Writes Region Lists Files

Make Edge Lists

Reads Rezion Quad Files

Writes Edge Lists Files

Make V-3 Grapns
Reads Edge Lists Files
Writes V-3 Files

Make V-3-3 Graphs

Reads V-S Ffiles

Reads Region Lists Files

Writes V-5-3 Files

Writes Statistical Summary Files
Resegment, V-3-S Graphs

Reads and Writes V-35-S files

Coanvert, V-S-3 Graphs to H-C Graphs

Gorrelate H-C Grapns for Depth

Correlate H-C Grapnhs for Motion

Label H-C Graphs and Fora Object
Graphs from Isolated Subgraphs

Reads V-S-3 Graphs

Reads Paraaeter Files

Reads Vertex/Rszion Labels Files

Writes H-C Ffiles

Label Objects, Form Object Libraries

Reads H-C Files

Reads Object Library Files

dArites Ooject Library Files




F.3. Otner Prograus

Prograa(.lang)
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Descoription

P P

Take 252x2§8x6 8it or 35%Ux476x5 Bit Image Sequences
-Color or B/W

Take 252x233x6 Bit Motion Seguance
Smooth-Ennance Images

Expand-Squeeze Resolution

Display Gray Scale/Color Images

Display Binary Pictures

Display Binary Pictures On Plasma Panel
Display Zdge Detection Plots

Display £dge Triples and Region Quad Files
Display in Coler ctdge Triplées and Region
Quad tiles

Display Edge Lists Files o -
Display Reﬁion Lists, V=5, and V-S-3 riles
Display H-C Files (dispo.lcL)

Print Object Liprary Directory Information

Edge Detection - Adaptive Thresnold Method
tdge Detection - Rosenfeld, Yakiaovsky,
Linear Difference

Edge Detection - Hueckel, Psusdo-Huecxel

Picture Arithaetic

Merge £dgze Files For Color-Texture
Superposition

Make Textured Regions Mask

Expand-feduce Image Resolution/Canera Systea
Expand-fReduce Image Resolution/files
Compute Edge Detector Parajeters

Plot zdge Detector Tuning Plots

Plot Edge Detector luning Plots

Plot Edge Detector Tunin§ Plots

Select a Window from an .mage

Plot Histograms, Sliges froa Image Files
Plot Image as a 3-D fuaction

Estimate Image Noise Statistics

Edge Texture Image Generator -
V=3-3 8inary rormat To ASCI] List Forma'
V-3-3 ASCII List Foramat to Binary foraat
Merge Region List tatries

Make Artificial Images

Scale Colors For Image Display

Edit V-S5-3 Segquences

Edit Edge Triples 3Sequances

Edit Image Sequences
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